
Computer Science
Department
Telecooperation Lab

Library of Open Source Hardware:
Creating a Semantic Knowledge
Base and Search Engine for Open
Source Hardware
Master thesis by André Lehmann
Date of submission: September 30, 2022

1. Review: Prof. Dr. Max Mühlhäuser
2. Review: Dominik Schön
Darmstadt

Abstract

The concept of open source has proven to be a great driver of innovations in terms of software and
played a crucial role in the growth of digital technologies. It is believed that openly sharing designs,
implementation, and documentation could have the same effect on hardware as well and could lead
to rapid technological advancements [1]. However, the lack of accepted standards and tools for the
development and documentation of open hardware and the unclear legal implications hinder Open
Source Hardware (OSH) from unfolding its full potential. One step towards the success of OSH
is to improve the discoverability of already existing hardware solutions. There are many popular
online platforms for sharing hardware designs, but it is currently impossible to conveniently search
for designs across multiple platforms.
The primary goal of this thesis was to create a semantic knowledge base and a web search engine for
OSH products. We placed a strong emphasis on usability and user experience and projected our work
accordingly. To assess the system requirements, we conducted expert interviews with members of the
OSH community. The interview evaluation showed many unexpected and previously unknown user
needs and wishes. We used the results to design and implement a system that not only meets the
requirements but also provides a remarkably good usability and a satisfying user experience. The
developed search engine collects product information from various content hosting platforms, creates
an index for eligible products, and allows users to find them by their properties using an advanced
query syntax. Furthermore, the service offers Semantic Web (SW) technologies to create meaningful
data connections with other datasets on the web and empower future research. In order to test and
validate our service, we conducted a usability testing, where we asked the previously interviewed
participants to solve a set of tasks using our service and observed their interaction. The observation’s
outcome and the results of the subsequent questioning were evaluated and used to derive measures
for further improvements.
The usability testing showed us that users could easily find product designs, filter them as desired,
and configure how to display the results. The participants expressed satisfaction and deemed the
service to be useful. Compared with other similar search engines, such as OHO search and the
OPENNEXT LOSH demonstrator, our service provides a significantly better search functionality and a
more user-friendly interface. We conclude that our contribution improves the discoverability of OSH
products and proof that our service is a valuable addition to the OSH community’s toolset. We are in
contact with representatives of the OPENNEXT research project to discuss how our results can be
exploited and improved in current and future research projects.

I

Contents

List of Abbreviations IV

List of Figures V

List of Tables VI

1. Introduction 1
1.1. Context and Motivation . 1
1.2. Problem Statement . 2

2. Background 4
2.1. Open Source Hardware . 4
2.2. Semantic Web . 5

3. Related Work 7
3.1. Search Engines . 7
3.2. Open Hardware Observatory . 8
3.3. Open Know-How Specification . 8
3.4. OPENNEXT - Library of Open Source Hardware . 9

4. Requirements Analysis 13
4.1. Introduction . 13
4.2. Requirements Interview . 13
4.3. Terminology and Conventions . 14
4.4. Requirements . 15

4.4.1. Crawler . 15
4.4.2. Product Search . 18
4.4.3. RDF Resource . 25
4.4.4. API . 26

5. Design and Implementation 27
5.1. System Architecture . 27

5.1.1. Reasoning for a New Implementation . 28
5.1.2. Notable Components, Libraries and Frameworks 29

5.2. Database and Data Model . 32
5.3. Crawler . 33
5.4. Web Interface . 40

5.4.1. Product Search . 46
5.4.2. Semantic Web . 54

II

6. Evaluation and Validation 55
6.1. Introduction to Usability Testing . 55
6.2. Methodology . 56
6.3. Results . 57
6.4. Discussion . 68

7. Conclusion and Future Work 71
7.1. Conclusion . 71
7.2. Future Work . 72

Appendices VII
A. Requirements Analysis Interview Questions . VII
B. Usability Testing Tasks . XI
C. Profiles of the Interviewees . XV
D. Query Syntax Definition . XX

Bibliography XXVIII

III

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
EBNF Extended Backus–Naur Form
LD Linked Data
LOSH Library of Open Source Hardware
OHO Open Hardware Observatory
OKH Open Know How
OSH Open Source Hardware
OSS Open Source Software
OWL Web Ontology Language
RDF Resource Description Framework
SW Semantic Web

IV

List of Figures

3.1. LOSH Demonstrator Network Diagram . 12

5.1. Network Diagram . 28
5.2. Discover Products Flowchart . 35
5.3. Update Products Flowchart . 35
5.4. Add Product Entry Flowchart . 36
5.5. Update Product Entry Flowchart . 36
5.6. Request Resource Flowchart . 37
5.7. Request Product Information Flowchart . 37
5.8. Homepage . 40
5.9. Product Search Results Page . 42
5.10.Query Syntax Cheat Sheet . 43
5.11.Product Details Page . 43
5.12.Licensor Details Page . 44
5.13.License Details Page . 44
5.14.RDF Resource Page . 45
5.15.Product Search Sequence Diagram . 46
5.16.Handle Search Request Flowchart . 47
5.17.Query Syntax Railroad Diagram . 50
5.18.Handle RDF Resource Request Flowchart . 54
5.19.Handle RDF Resource Representation Request Flowchart 54

6.1. Number of issues by category . 68

V

List of Tables

3.1. LOSH Demonstrator Components . 10
3.1. LOSH Demonstrator Components . 12

D.1. Query Syntax - General Expressions . XX
D.2. Query Syntax - Text Operator Type . XXI
D.3. Query Syntax - Boolean Operator Type . XXI
D.4. Query Syntax - Number Operator Type . XXI
D.4. Query Syntax - Number Operator Type . XXII
D.5. Query Syntax - DateTime Operator Type . XXII
D.6. Query Syntax - Basic Operators . XXIII
D.7. Query Syntax - Categorization . XXIII
D.7. Query Syntax - Categorization . XXIV
D.8. Query Syntax - Repository . XXIV
D.9. Query Syntax - License . XXIV
D.9. Query Syntax - License . XXV
D.10.Query Syntax - Licensor . XXVI
D.11.Query Syntax - Files . XXVI
D.12.Query Syntax - Standard, Publication, Maturity, etc. XXVI
D.12.Query Syntax - Standard, Publication, Maturity, etc. XXVII

VI

1. Introduction

1.1. Context and Motivation

In terms of software, the concept of open source proved to be a driver of great innovations. Today, most
modern businesses rely on Open Source Software (OSS) [2]. The fact that OSS can be freely inspected,
copied, modified, and redistributed played a crucial role in the growth of digital technologies and
thus gave rise to a billion-euro economy [3]. OSH, on the other hand, is far less prevalent. Today,
thousands of designers and makers are already freely sharing their hardware designs, reusing and
adapting existing solutions, and discussing new ideas online. Unfortunately, the trend of open-
sourcing designs and documentation for hardware has not caught on with industries. The OSH
movement still suffers from a lack of accepted standards and tools for developing, documenting,
and sharing hardware creations. Furthermore, the unclear legal implications of exploiting open
hardware discourage adoption by industries. There is a high demand for renewable energies and
other sustainable technologies [4] where the concept of open source may be a key enabler for future
technological advancements. As such OSH can have a substantial positive impact and may help solve
today’s pressing environmental and economic matters.
There are quite a few platforms for publishing and sharing hardware designs and documentation
online. The problem lies in the poor connections between these platforms and their communities. It is
currently not conveniently possible to share creations between platforms and to search across platforms
to find desired hardware designs. To draw the comparison with OSS, there is no package manager
that allows downloading and managing product designs. Thus, makers cannot easily find already
existing hardware solutions and cannot effectively adopt, use and improve OSH technologies. With
this in mind, the Open Know How (OKH) and Library of Open Source Hardware (LOSH) specifications
were created. Their goal is to improve the discoverability and portability of knowledge on making
open hardware [5], [6].
The goals of the LOSH project are twofold. Firstly, define a standard to describe products with
metadata, and secondly, create a public semantic knowledge base and search engine for OSH products.
The project aim is to collect product metadata and technical documentation from various platforms
and make these immediately searchable and cross-referenceable [6]. The LOSH project efforts led to
a web service being created that served as a demonstrator. The service collected product metadata
from multiple platforms and offered a very basic web interface for searching through the catalog
of collected data. The demonstrator met the basic requirements and was, to some degree, useful
as a search service. Furthermore, it contained enough high-quality OSH designs to be helpful in
technology research, but the overall functionality and user experience leave much to be desired [7].
Although the demonstrator showed some usefulness, it lacks the capabilities that users expect from a
fully featured search engine. Furthermore, the usability of the demonstrator is rather poor, and the

1

user experience is not that good either. Lastly, as the system architecture and technological choices
are unsuitable, it would require significant efforts to improve the system.
In this work, we created a semantic knowledge base and search engine for OSH. The goal was to
create a service that is easy and satisfying to use, improves the discoverability of open hardware,
and presents value to the OSH community. For the search engine to have a chance for adoption by
the community, we implemented an advanced search functionality to grant access to the full set of
product information with an appealing easy-to-use web interface. We conducted expert interviews and
user studies with volunteers from the OSH community to assess system requirements and evaluate
the usability and user experience of the final service.

1.2. Problem Statement

Creating a knowledgeable base and search engine comes with a variety of challenges. The main goal
of the thesis is to provide a functional, fairly usable search service with good chances of adoption by
the OSH community. As such, the thesis focuses on aspects and challenges that are fundamental to the
success of the service. At the center of research and development are usability and user experience.
A service that allows a user to effectively, efficiently and satisfyingly achieve a specific goal demonstrates
good usability. In addition, if the service also behaves as expected and subjectively works well for the
users, then the service also exemplifies a good user experience. Good usability and user experience
are necessities for the success and adoption of the search service that is to be created as part of this
thesis. Good usability and user experience alone do not guarantee success but improve the chances of
target groups recognizing its value and adopting the service. Previous works on the LOSH project
were rather concerned with functionality than the user’s experience. An important aspect of this work
will be to identify end users’ needs, expectations, and how the users will use the service. The results
must be taken into consideration when designing and implementing the service. Furthermore, to
confirm reasonably good usability and user experience, the final product must be tested with actual
users under real-world conditions.
Various platforms allow sharing of ideas and hardware designs openly. Each platform has its philosophy,
scope, and data formats. In order to create a rich, overarching dataset, a common vocabulary and
semantics must be established. The LOSH specification covers a large portion of use cases, but it
has to be adapted to the requirements of the thesis. Once a common basis has been established, the
platforms’ differences must be dealt with. This involves a mapping of data fields and inferring missing
information.
Documents on the public web are typically geared towards human consumption and interaction and
thus are not easily readable and comprehensible by machines. Semantic Web (SW) aims to make
these documents more easily machine-readable and available to automated processes by extending
them with standardized metadata. This metadata is expressed through the Resource Description
Framework (RDF). RDF encodes the information as graph data, thereby opening up the possibility
to link data entities together, even across the boundaries of unrelated datasets [8]. The value of
such linked data becomes apparent once the web of interconnections is sufficiently dense. In such a
net, previously invisible connections can become evident and reveal hidden truths. This is especially
interesting in the field of OSH. Cross-linking products, users, and other entities might help to answer

2

complex questions and empower more research on the topic of OSH. The thesis aims to lay the
groundwork for future research by providing all data also through SW technologies.
Web search engines such as Google perform a regular crawl of large portions of the public internet.
The goal of the crawler is to find and select relevant information, store it in an index and make it
easily searchable. Sites need to be revisited to check for changes and update the index accordingly.
Every time a website is visited, the crawler must ensure not to overwhelm the content-providing
service. These properties are defined as crawler policies that every kind of crawler must abide by. The
crawler in this work may only have to visit and search a few selected platforms, but the search space
is still quite large and is subject to growth. Despite the amount, newly created projects need to be
found in a reasonable timeframe and kept up-to-date. While searching for OSH products, the number
of requests and the request frequency to individual platforms need to be limited. Developing and
optimizing policies for the presented use case of the thesis will require research and real-world trials.

3

2. Background

2.1. Open Source Hardware

Open Source Hardware (OSH) or simply Open Hardware is defined by the Open Source Hardware
Association (OSHWA)1 as physical artifacts — tools, machines, devices, or other physical things —
”whose design is made publicly available so that anyone can study, modify, distribute, make, and sell
the design or hardware based on that design.” [10]
There is no uniform standard for publishing hardware designs and documentation. Even so, there are
some guidelines and recommendations for publishing OSH. Ideally, the hardware plans are made
available in formats that allow modifications, readily-available materials and components are used,
and the hardware is built on standard processes and open infrastructure. Furthermore, to remove the
restrictions of proprietary components and software and ensure the best possible adaptability and
compatibility, it is advised to use free and open-source design tools.
OSHWA created a guideline to help develop and evaluate licenses for OSH. It provides the OSH
community with an easy way to publish OSH and establish a legal basis for reuse and distribution.
Their definition entails information on how to document the hardware, what to include, how to
attribute derivations, and more [10]. Other projects, such as the standardization effort by the DIN
SPEC 3105, extend the previous OSHWA definition to address criteria for the technical documentation
of open source hardware and introduce a community-based assessment scheme for independent
verification [11]. All these efforts may eventually lead to OSH being more widely accepted and
adopted by the industry.
Just like OSS gave rise to a billion-euro economy [3], the OSH paradigm can also have a substantial
impact. Proprietary ownership is often a hindrance when it comes to innovations. Patents and
lawsuits can dramatically impede technological advancement, which is especially bad regarding
renewable energies and sustainable technologies. Sharing knowledge, resources, and blueprints
while encouraging commerce through the opened-up exchange might be the key to solving pressing
environmental and economic problems [1].

1 The Open Source Hardware Association (OSHWA) (oshwa.org) is a non-profit organization that promotes the idea of
Open Source Hardware. They are maintaining a certification program based on their Open Source Hardware Definition.
Furthermore, they foster cooperation with other OSH movements and organizations by organizing conferences and
community events [9].

4

https://www.oshwa.org

2.2. Semantic Web

The dataset of OSH products is not only interesting in a use case such as a search engine but also for
other applications as well. If the dataset could be connected to other datasets on the web to create a
comprehensive, distributed knowledge base, it would be possible to find meaning and relationships
beyond the scope of the data in itself. Other services and especially research can benefit from such a
setup. This is where the concept of Semantic Web (SW) comes into play.
SW is a concept to turn the classic web of documents into a web of data. Classic document formats
on the web are usually more geared towards human consumption and interaction. The idea of the
SW is to make these documents more easily machine-readable and available to automated processes
by extending them with standardized metadata. The definition of standards and technological
developments on that topic is led by the Wide Web Consortium (W3C) and supported by researchers
and industrial partners around the globe [12].
HTML, PDF, and other document formats found on the web are primarily meant to be read by human
users. HTML offers a structure for data presentation, but it lacks data semantics and thus cannot
easily be interpreted by machines. Web crawlers that scour the web to harvest information usually
employ web scraping or some form of text mining. By encoding semantics and metadata, robots
do not have to rely on that kind of data collection. Moreover, they can avoid the uncertainties and
ambiguities in dealing with free-form texts. In the context of the SW, technologies such as the Resource
Description Framework (RDF) and the Web Ontology Language (OWL) were created to formally
represent metadata. RDF is used as a model for describing and interchanging graph data. OWL, on
the other hand, is used to describe concepts, categorize objects, and express relationships between
those objects [8].
Most of the data is stored in silos, isolated from the rest of the world. It is argued that the globally
interlinking databases across the internet will unfold a huge potential and allow insights into hidden
relations within the data. The first step is to make the dataset available using SW technologies such as
RDF. The second step is to link related data together to create an actual ”web” of data. This is called
Linked Data (LD) or Linked Open Data when the data is openly accessible. Linked Data allows to
explore relationships between data entities through semantic queries. Links are expressed by Uniform
Resource Identifiers (URIs). Tim Berners-Lee, inventor of the World Wide Web and director of the
W3C, names for rules for LD URIs [13], [14]:

• ”Use URIs as names for things”
• ”Use HTTP URIs so that people can look up those names”
• ”When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL)”
• ”Include links to other URIs. so that they can discover more things”

In practice, access to LD is usually provided in the following fashion. When a resource is requested
from a service that offers LD access, the first thing happening is the URI gets dereferenced. Human
readers requesting the information in HTML form will be redirected to a conventional web page. On
the contrary, machines requesting an RDF representation will be redirected and prompted with the
data in serialized RDF form. This allows traditional web browsers and semantic web browsers to

5

be used alike. An excellent example of a LD service is DBpedia2. DBpedia holds structured content
extracted from various Wikimedia3 projects and offers an interface for retrieving information as
Linked Data. The sheer amount of available information on Wikipedia alone and the high degree of
interconnections allow for a detailed exploration of any topic imaginable.

2 https://dbpedia.org/
3 https://www.wikimedia.org

6

https://dbpedia.org/
https://www.wikimedia.org

3. Related Work

3.1. Search Engines

Search engines provide an effective and efficient way of finding relevant information in large datasets.
The best-known use for search engines is finding information and documents on the web. Search
engines such as Google1 or DuckDuckGo2 scan large parts of the public internet and provide a publicly
available search index for everyone to use. Other search engines for other purposes and domains
exist. Some of these provide search functionality for specific pages and datasets, like classic libraries
that provide a search for their stock of books, magazines, and other publications. Another example
of a specialized search engine is the GitHub3 code search, which returns matching source code on
the GitHub platform. The search engine presented in this work is tailored towards OSH from various
hardware hosting platforms.
[15] classifies search engines into the following types:

• Crawler-Based Search Engines: Crawler-based search engines are the most common type of
search engine found on the web. A crawler, also referred to as a Spider or Bot, is a program that
automatically scours the web, collects information, and feeds them into an index. The crawler
also keeps the search index up-to-date by revisiting websites. The search engine then uses the
index to retrieve and rank relevant results. Crawler-based search engines are a perfect fit for
the constantly changing and evolving web. Good examples of this type of search engine are
Google or DuckDuckGo.
This type of search engine will be developed and deployed in this work.

• Human-Powered Directories: Human-powered directories, as the name suggests, are a type of
search engine that rely on a human-created index. Manual human labor is required to perform
any additions or updates to the index. These types of search engines can be found in classic
libraries.

• Hybrid Search Engines: Hybrid search engines combine a crawler-based search engine with
a human-powered directory. An index is created automatically with human intervention and
quality control.

• Meta Search Engines: Meta search engines are aggregates that rely on results of other search
engines. They combine the results of a search, rank them anew, and present them to the user.
An example of a meta search engine is StartPage4.

1 https://www.google.com
2 https://duckduckgo.com
3 https://github.com
4 https://www.startpage.com

7

https://www.google.com
https://duckduckgo.com
https://github.com
https://www.startpage.com

A search for a specific thing is defined by a search query. A search query is a phrase, a combination
of keywords and operators used to retrieve specific information from a dataset. The syntax and
capabilities of said search query varies from search engine to search engine. While some engines only
support keyword-based text search, others have an advanced syntax and allow for complex queries. A
lot of search engines provide what is called search operators. These operators can be used to refine
the search results. For example, Google’s site: operator can be used to limit the search results to a
specific website.

3.2. Open Hardware Observatory

The Open Hardware Observatory (OHO) is the conceptional predecessor to the Library of Open Source
Hardware (LOSH) and laid the groundwork for OSH-centered meta-search engines. It originated as
an initiative by a member of the non-profit organization Open Source Ecology Germany e.V. 2019 it
was taken over by the Technische Universität Berlin, and since 2021, the newly founded non-profit
association OHO - Open Hardware Observatory e.V. has been taking care of the project [16].
Its original purpose was to provide a mechanical and electronic hardware search engine. A web
crawler was developed and deployed that searched the web for keywords related to do-it-yourself
(DIY) and Open Hardware. The results were categorized in one of∼500 categories and made available
through a web interface. The resulting dataset was curated through partly automatic and partly
manual quality control. The goal was to make the thousands of DIY and OSH projects worldwide
searchable and thus available for anyone to use, adapt and improve [16].
Since the Technische Universität Berlin and later the newly founded OHO association took over, the
goals shifted towards supporting, improving, and publishing sustainable Open Hardware projects.
OHO recognizes the immense potential that OSH and DIY can have for sustainable development.
Most OSH projects do not properly publish blueprints, material lists, instructions for assembly, and
other crucial information. The documentation is often lacking, which makes it very hard to replicate
and adapt the projects. The OHO association sees a great demand for low-cost and proven solutions,
especially in developing countries, where access to affordable products and technologies is rather
limited. Therefore, OHO tries to provide a search for DIY and Open Hardware projects, create, improve
and publish blueprints for selected promising projects and offer certification [17].
Due to the strong focus on DIY projects and lax policies regarding mandatory project information, the
OHO index still contains a lot of projects without a license and other legal information. This poses
no issue for private reuse, but it hinders adoption by small businesses and companies, where legal
aspects have greater importance.

3.3. Open Know-How Specification

The Open Know How (OKH) specification (OKHv1) is an attempt to improve the openness of know-how
for making hardware by improving discoverability, portability, and interactivity of knowledge [18].
The specification defines a metadata standard for OSH and is developed by the Open Know-How
Working Group, which is part of the Internet of Production (IoP) alliance. The IoP alliance represents
a group of people and organizations who believe in a decentralized manufacturing and shared

8

knowledge approach for shaping the fabrication and production of goods in the future. The idea is to
build a sustainable system that is globally networked and locally executed. As a result, people shall
be enabled to create products from locally sourced materials and components from global designs. As
steps towards these goals, processes and open-source tools are being developed that empower makers
and designers to document and share their creations easily. The OKH specification is one of those
instruments [19].
The goals for the OKH project are threefold [5], [20]:

1. Discoverability: Allow documentation of OSH to be found regardless of where it resides on the
internet. This goal is addressed by creating the OKH Specification, which in turn, can be utilized
to develop web crawlers to discover hardware documentation.

2. Portability: Allow hardware documentation to be shared between different content platforms
and transferred from one platform to another. Part of the solution to this goal is creating an
accepted standard for Open Hardware metadata.

3. Interactivity: Allow know-how about making hardware to be created, updated, and published
without centralized control.

As part of the efforts, a simple Open Know-How Search5 was developed. Users can enlist their
hardware product by publishing metadata in the OKH standard on one of the supported community
sites Appropedia6, Field Ready7 or GOSH Community8. The service collects the metadata and offers a
simple web interface for searching through the products.
The OKH specification is not widely adopted yet and lacks real-world empirical results for validating
its claims. Moreover, the offered search engine is in a prototype stage and has a rather limited set of
features. The software is written in Node.js, which is outside of our expertise; thus, it is not used as a
basis for our work.

3.4. OPENNEXT - Library of Open Source Hardware

The Library of Open Source Hardware (LOSH) Specification is a fork of the OKH Specification. It is an
effort to incorporate current research results and make the specification applicable to Linked Open
Data. The project was initiated in 2020 by the OPENNEXT project [6].
OPENNEXT is a research project of 19 industry and academic partners across Europe and has received
funding from the European Union’s Horizon 2020 research and innovation program. OPENNEXT
aims to bring the principles of open-source closer to the development and distribution of products
and goods. Small and medium enterprises shall be enabled to work more closely with consumers,
makers, and other communities. OSH is deemed to be the basic building block to success. The
intention is to release product designs as open source, allowing anyone to study, modify, share, and
redistribute copies. The idea itself is nothing new and well-established practice in Open Source
Software (OSS). Open-Sourcing designs and documentation can reduce proprietary vendor lock-in,

5 https://search.openknowhow.org
6 https://www.appropedia.org
7 https://field-ready-projects.openknowhow.org
8 https://projects.openhardware.science

9

https://search.openknowhow.org
https://www.appropedia.org
https://field-ready-projects.openknowhow.org
https://projects.openhardware.science

planned obsolescence, and waste of resources and also empower novel business models. As stated
before, the term open-source doesn’t imply free-of-charge. Businesses shall still be able to earn a
living with their work [1], [6].
The efforts of OPENNEXT in the LOSH project are very similar to the OKH project. One of the
differences is the strong emphasis on legal aspects such as proper licensing to enable commercial
exploitation of the designs. Many hardware creators freely share their designs online but do not
supply a license, or they license their hardware under conditions prohibiting commercial use. This is
a hindrance to the growth of OSH and one of the reasons open hardware products are not widely
accepted throughout industries. As a consequence, potential users that do not have a background in
OSH have a relatively high hurdle to overcome to find suitable designs that can be legally adapted,
commercially produced, and sold. To address some of these issues, the following two solutions were
proposed and developed in the context of the LOSH project [6], [21]:

• LOSH Specification: The specification is based on the OKH specification, incorporates current
research findings, and ensures compatibility with LD. Like the OKH specification, the LOSH
specification is also a standard to describe OSH products with metadata. It is different from
OKHv1 in that it tries to merge datasets from different platforms, whereas the OKHv1 approach
is one-size-fits-all.

• Semantic Knowledge Base and Search Engine: Powering a distributed database and offering
a knowledge base and search engine for OSH. The service shall enable users to search across
various hardware hosting platforms. Furthermore, the users shall also be able to access any
product information as LD. To ensure a minimal quality standard, only products are considered
that conform to the specification. The authors must supply mandatory information such as
the author’s name, license, and other legal information. The service is not intended to replace
existing hardware hosting platforms but as a tool to bridge the gaps between them.

In the course of the LOSH project, a demonstrator9 of the semantic knowledge base and search
engine was created. The demonstrator is based on Wikibase. Wikibase is developed by Wikimedia
Deutschland and comprises a set of MediaWiki extensions and other third-party tools. It is used
to build knowledge bases for the semantic web [22]. Like the previously mentioned OHO Search
Engine, LOSH also consists of a database, an interactive web interface, and a crawler component. The
demonstrator provides only a minimal set of features, which is just enough for a proof of concept.
Table 3.1 contains a description of all components. The interaction of the components is depicted in
Figure 3.1.

Component Description
Krawler Krawler10 is the crawler component, which searches through platforms such as

Wikifactory and GitHub, downloads product metadata, parses and sanitizes it,
and converts it into an RDF format for uploading it into the Wikibase database.
The Krawler application is developed as part of the LOSH project and is written
in Python.

Table 3.1.: LOSH Demonstrator Components

9 https://losh.opennext.eu

10

https://losh.opennext.eu

Component Description
LOSH Backend The LOSH Backend11 provides search capabilities and data access to the LOSH

Frontend. When a search is issued, the LOSH Backend first performs a full-
text search using the ElasticSearch database to find matching products. In the
second step, the full product details are requested from the Wikibase database
for each result found in the first step. The entire result set is then exposed over
a GraphQL API and displayed via the LOSH Frontend.
The LOSH Backend application is developed as part of the LOSH project and is
written in Node.js.

LOSH Frontend The LOSH Frontend11 provides the web interface for users to search for hardware
products. It uses the LOSH Backend application to perform the search and
receive results.
The LOSH Frontend application is developed as part of the LOSH project and is
written in Node.js.

Wikibase Wikibase12 is a set of MediaWiki extensions for storing and managing semi-
structured data. It is used to build knowledge bases for the semantic web. Like
MediaWiki itself, the extensions are also developed by Wikimedia. Most notably,
two extensions are of relevance in the context of the LOSH project. First, the
Wikibase Repository which is used as a structured data repository and allows
editing and storing of data. Second, the Wikibase Client which is used to display
data from the Wikibase Repository via Lua modules or parser functions. The
data is stored in the same relational database as the MediaWiki content but is
managed solely by the Wikibase extensions.

WDQS Backend The Wikidata Query Service (WDQS) Backend13 is triplestore database based on
Blazegraph and developed by Wikimedia. It receives a copy of the data stored
in the Wikibase dataset and offers a SPARQL endpoint for querying the data.

WDQS Frontend The frontend for Wikidata Query Service13 provides a web-based UI for the
WDQS Backend. It allows users to run SPARQL queries against the dataset.

MariaDB MariaDB14 is a community-developed fork of the MySQL relational database
management system (RDBMS). The database is primarily used as a backing
store for Wikibase/MediaWiki. All the dynamic contents of MediaWiki are stored
within the MariaDB database together with the semi-structured data of Wikibase.

ElasticSearch ElasticSearch15 is a document-based database used for efficient full-text text
search. In the project context, the database is used for full-text search on the
various text-based product properties like product name or description. For it to
work, the LOSH dataset is copied from Wikibase into the ElasticSearch database,
and in turn an efficient search index is created. The downside is, of course, the
need for data duplication and higher resource demands.

11

Redis Redis16 is an in-memory key-value databasemainly used for caching andmessage
brokering. In the LOSH demonstrator, it is used to cache rendered HTML pages
of MediaWiki and thus improve access times. It is not used for the LOSH
Frontend and therefore doesn’t contribute much to the project.

Table 3.1.: LOSH Demonstrator Components

Figure 3.1.: LOSH Demonstrator Network Diagram

10 https://github.com/OPEN-NEXT/LOSH-Krawler
11 https://github.com/wmde/LOSH-Frontend
12 https://wikiba.se
13 https://www.mediawiki.org/wiki/Wikidata_Query_Service
14 https://mariadb.com
15 https://www.elastic.co/elasticsearch/
16 https://redis.io

12

https://github.com/OPEN-NEXT/LOSH-Krawler
https://github.com/wmde/LOSH-Frontend
https://wikiba.se
https://www.mediawiki.org/wiki/Wikidata_Query_Service
https://mariadb.com
https://www.elastic.co/elasticsearch/
https://redis.io

4. Requirements Analysis

4.1. Introduction

Before software can be designed and successfully implemented, a requirements analysis needs to be
performed. The requirements analysis is used to capture the stakeholder’s wishes and expectations of
the software to be built or modified. The process involves analyzing, documenting, and validating
the system requirements. The result of these efforts is the System Requirements Specification (SRS). A
fully featured SRS should contain a detailed description of the purpose of the system, its functionality,
how it should look and feel, how it should perform, and any other system parameters that deem
important. The goal is to provide a document that can be used as ground truth for the entirety of the
development process.
For this thesis, a simplified, lightweight SRS has been chosen instead of a fully dressed one. Each
requirement is described in a brief paragraph stating the problem and main success scenario.
The requirements analysis in this thesis was performed using two methods. First, a feral study of
existing and similar software solutions was carried out, and second, interviews with OSH community
members were conducted. Studying existing search engines and hardware hosting platforms revealed
valuable insights into general usability, user experience, and best practices regarding web crawling.
The interviews as well yielded practical and sometimes unexpected requirements and wishes that
have been taken into account.

4.2. Requirements Interview

Interviews with OSH community members were conducted to capture the requirements and wishes of
potential future users of the LOSH service. The goal was to directly involve the community and end
users in the development process to get a general idea of how the final service would be used.
The interviews were conducted online in a face-to-face meeting using a semi-structured style. The
interviewees were first tasked to perform search queries using the existing OPENNEXT LOSH demon-
strator. Each participant was asked to ”think out loud” while performing the tasks, revealing their
experiences, struggles, and expectations. After each challenge, qualitative questions were asked to
spawn a conversation and get deeper insights into specific aspects of the future service. Once the
challenges concluded, and the participants had a relatively good understanding of what the project
entails, they were asked to state their opinions regarding the planned features and usage behavior.
The following list contains an excerpt of the questions asked. The full set of questions used as a guide
to the interview can be found in Section C the appendices.

13

• What OSH Platforms have you heard of and used before?
• What would you use the new LOSH service for, and what do you think other users would use it for?
• What do you expect of an overview page of a product?
• What importance does versioning play and should the service index all available versions and make

them searchable?

The interviews were evaluated by defining keywords, categorizing the results, and phrasing short
requirement descriptions. The results are presented in Section 4.4. There, each requirement is
grouped into components and topics. For requirements that are derived from the interviews, the
context, i.e. the stated problem and expectations, is preserved as part of the description.

4.3. Terminology and Conventions

This section describes the standards, typographical conventions, and terminology used to document
the requirements.
Categories with requirements articulated by one or more interviewees are split into two sections. The
requirements stemming from an interview are placed first. Those also contain additional context from
the interviews themselves and have references (initials) to the participants who stated them, e.g., JP.
Requirements are captured as either mandatory or optional. The following terms are used in that
regard:

• SHALL: Requirements marked with SHALL are mandatory and must be implemented. They
make or break the functionality of the service.

• SHOULD: Requirements marked with SHOULD are optional. They are either nice-to-haves or
simply not feasible to implement in the given time frame.

The following terms are used to describe a fact:

• Product: Product denotes an tangible OSH product.
• Full-Text Search: Full-Text Search refers to searching for words in a comprehensive text data

source. A match is found if the source text contains any or all the words from the query. The text
is preprocessed to unify different word forms and tenses to be more effective. The preprocessing
includes the following:

– split the text into chunks (tokens)
– convert tokens into lowercase
– perform Unicode normalization
– reduce words to their root form (stemming)
– remove insignificant stop words

• Service: Service denotes the web service to be developed as part of this thesis.

14

• Robot: Robot denotes a machine (automated program) that queries the service on a user’s
behalf.

• User: User refers to a human that uses a web browser to access the service.
• Client: A Client is either a human user or a robot that uses HTTP to request resources from the

service.
• Platform: A Platform represents a place for users to document and discuss their product creations

(e.g. Wikifactory). The platforms are to be indexed and made searchable using the service.
• Web Interface: The Web Interface provides users access to the resources stored in the database.

The interface takes the user input and returns an HTML document containing the requested
information.

4.4. Requirements

4.4.1. Crawler

The Crawler is the component that scours the content hosting platforms for OSH products.

Indexing

R1 Index Update: New products are created daily, and new versions of existing products are
released frequently. Therefore, the crawler SHALL automatically and regularly update the index.
Previously indexed product releases SHALL be checked for changes as well, since some properties
may have changed. NW gave the example of revoking an attestation according to DIN SPEC
3105-2, which needs to be reflected in the search index.

R2 Index Deletion: There is no uniform consensus regarding handling deleted products. If a product
creator decides to delete their creation, then the service needs to handle this case the next time
it tries to update the product information. FR suggested deleting products from the index which
are not mentioned/referenced in other products and keeping the rest. MH, on the other hand,
said to delete missing products from the index because the service is not intended as an archive.
JP, OS, PJ and TW favor keeping deleted entries in the index, mark them as missing and hide
them in the search per default. If desired, the user could include the missing entries by adding
the appropriate search operator. The service SHOULD keep deleted entries for a period of time
and mark them as absent. After the grace period, the entry SHOULD be deleted from the index.

R3 Versioning: Almost all interviewees see a high potential in including version information for each
product. A user could monitor changes over time, which may indicate the activeness of a project,
get feedback on where and what versions are used most often, and see if a component is still
compatible in a particular version. Also, NW brought up an issue regarding attestation, where
versioning plays a crucial role. It is not unlikely that only a few versions of a product got actually
attested. Knowledge about versions in this context is, therefore, an absolute requirement. Thus,
the crawler SHALL includes all versions when indexing the product platforms.

15

R4 Automated Crawling: The crawler SHALL be able to find and index products automatically.
This means it SHALL run as a continuous job, go through the content of each platform, extract
metadata of each found product and add it to the database.

R5 The crawler SHALL be able to discover and collect designs that provide an OKH or LOSHmanifest.
This needs to be done in a timely manner to detect newly published products in a reasonable
time frame.

R6 Multiple Platform Support: Each product platform has unique traits, scope, and data formats.
To support searching multiple platforms, a common data representation SHALL be defined.
Subsequently, a mapping of the platform data model to the model of the service SHALL be created.
If possible, any missing data fields SHALL be inferred from the available set of information. The
goal is to support all major hardware hosting platforms. For the sake of this thesis, at least the
following platforms SHOULD be supported:

• Wikifactory
• OSHWA Certification List
• GitHub

R7 Selection Policy: Some platforms may contain large amounts of content, from which only a
subset may be hardware related. A selection policy for each platform SHALL be defined and
implemented to pre-select possibly interesting content to crawl. The selection policy is required
to guarantee a reasonable crawling performance.

R8 Re-Visit Policy: Already indexed products need to be revisited to check if any updates are
available. A re-visit policy SHALL be defined and implemented that strikes a good balance
between up-to-dateness and performance.

R9 Politeness Policy: The crawler needs to ensure not to overwhelm any platform with thousands
of data-intensive queries in a short time. Best practice dictates that the speed and number of
requests per time SHALL be limited, and the crawling activity be throttled.
R9-1 Respect robots.txt: The robots.txt can be used by website owners to define what

pages web crawlers are allowed to access. The LOSH crawler SHALL respect the instructions
given in the robots.txt.

R10 Parallelization Policy: To scale the service and include support for more platforms, more than
one crawler instance needs to be executed in parallel. Multiple platforms SHALL be crawled in
parallel, but each platform shall only be accessed by one crawler instance at a time. Ergo, a
policy SHOULD be defined and implemented to coordinate multiple crawler instances.

R11 Extendability: The architecture of the crawler SHALL be easily extendible so that support for
other platforms can be added in the future.

R12 Low Ressource Usage: CPU, RAM, Network, and other system resources SHALL not be wasted.
The footprint of the application SHALL be as small as possible so that it can also be run on low-
spec hardware. Consequently, we SHOULD refrain from using a mix of different programming
languages and technologies, which often wastes resources. Sticking to a small number of
technologies and dependencies also makes it easier to port to a newer system configuration and
overall easier to deploy the application.

16

https://wikifactory.com
https://certification.oshwa.org/list.html
https://github.com

Security

R13 Sanitize Inputs: The crawler inherently works on untrusted user-provided input data. There are
several ways of exploiting the service and causing harm by injecting code or other arbitrary data
that is out of spec. Therefore, the crawler SHALL implement appropriate measures to defend
against such threats to protect the public database and other parts of the infrastructure.

R14 DOS: To ensure stable service operation and uptime, the service SHALL be protected against
some sort of Denial of Service (DOS). For example, DOS can be the result of triggering partic-
ular resource and time-consuming server tasks. For protection against these kinds of threats,
appropriate countermeasures SHALL be implemented. The measures should include enforcing
restrictions (request size, request execution time, etc.), using caching extensively, and handling
carefully.

R15 Non-Related Media: The service SHALL detect and prevent misuse in form of storing non-related
media and arbitrary data in the index.

Privacy

R16 Control Over Data: The users own the data they provide with their products. Therefore users
SHOULD be able to remove their information from the search index database by either updating
the corresponding products or other means.

R17 Malicious Content: Not all users have good intentions. Some users might try to misuse the
service to spread malicious information and content. Such content SHOULD be identified and
removed from the index.

R18 Unintentional Data Exposure: A user might expose privacy sensitive information such as phone
number or location into their documentations. These could be misused by scammers and
SHOULD be proactively redacted before being stored in the index.

Administration

R19 Configuration: The application SHALL be easily configurable using the YAML file format. It
SHALL feature configuration validation and the generation of a default configuration. Making
the configuration easily readable and testable reduces the chances of a faulty configuration in
production and, thus, a more robust service operation.

R20 Deployment: The service components SHALL be easy to deploy, regardless what hardware
platform or operating system is used. For portability and deployment in a clustered environment,
the service components SHALL also be provided in a containerized format (e.g. Docker).

R21 Logging: A stable and performant operation needs to be ensured. To do so, the service SHALL
provide configurable logging functionality. Proper logging can help to identify issues and provide
insights into the service state.

R22 Monitoring And Performance Metrics: The service SHOULD offer a monitoring endpoint and
a comprehensive set of performance metrics. This is to measure the system state, health, and
potential bottlenecks. Some metrics that should be considered:

17

• Runtime
• CPU Usage
• RAM Usage
• Network Usage

– download rate/amount
– upload rate/amount

• Crawled Products
– Number of indexed products per second
– Number of total indexed products
– Number of added products
– Number of deleted products
– Number of updated products
– Number of valid products
– Number of erroneous products

• Errors

4.4.2. Product Search

The Product Search refers to the web interface that the user uses to search for desired products.

Search Query

A Search Query is a phrase, a combination of keywords and operators used to retrieve specific
information from a data set. The user formulates a query to find something of interest, and the
search engine returns matching results. There is no defined standard when it comes to Search
Queries. Each search engine, such as Google or DuckDuckGo, has a query syntax with a varying set of
features. Full-text search is the most common and most well-known feature. Most search engines
also implement search operators to refine the results. For example, Google’s site: operator allows
searching for information on a specific site.
A simple yet powerful query syntax that allows complex queries to be formed is desired. However,
due to technical limitations, the complexity must be limited to a reasonable degree to guarantee a
performant operation.

R23 The interviewees desire a full-text search comparable to the search found in Google and other
search engines. For this reason, a full-text search SHALL be offered for text-based product
properties and assumed to be full-text searchable (e.g. product name or description). A full-text
search without explicitly specifying the property to search for SHALL use the product’s name,
description, category, and tags to find results.

18

R24 Performance is a factor that cannot be ignored. FR stated that search results should be available
shortly after the request was issued. A user usually performs more than one query. They start
with simple queries to get a general idea about the search space and then add filters to trim
down the results. Long wait times result in a poor user experience. Most users likely would stop
using the service, if they had to wait for a painfully long time. Consequently, results for search
queries SHALL return in a reasonable time frame. The mean time for search queries SHALL be
lower than 1 second.

R25 To ensure the performance goal, the complexity of the search query SHALL be limited. The
following limits are to be enforced:
R25-1 maximum of 500 characters in the query string (excluding whitespaces)
R25-2 maximum of 15 terms in a logical combination (AND/OR/NOT)
R25-3 maximum of 30 words for full-text search
R25-4 maximum of 10 wildcards

Search Operators / Search Filters

Search Operators are special symbols and commands that extend the regular full-text search and add
other capabilities. Many websites and search engines offer search operators with varying extents
of capabilities. Usually some form of logical (and/or/not), relational (==/!=/</>), navigational
(search in specific page) and other types of queries are supported. For example, a simple Google search
query car can be extended with a navigational query site:wikipedia.org to find cars specifically
on Wikipedia.org. Search Operators are a powerful tool to create complex queries and make search
results way more precise.
Search Filters are used to refine the search by removing unwanted items from the results list. Because
they can be implemented as operators, they are not treated as a separate concept. In addition to
specifying filters via the search query, they can also be made available through select boxes and other
input elements.
The following is a list of web services that offer advanced search capabilities. These stood the test of
time and can be used as a reference when defining and implementing the operators:

• GitHub: https://docs.github.com/en/search-github
• Google: https://support.google.com/websearch/answer/2466433
• DuckDuckGo: https://help.duckduckgo.com/duckduckgo-help-pages/results/syntax
• Slack: https://slack.com/intl/en-gb/help/articles/202528808-Search-in-Slack
• Zendesk: https://support.zendesk.com/hc/en-us/articles/4408886879258

R26 All interviewees expressed their need for filtering results beyond the ability to search products
by full-text. The consensus is the more filter options, the better. While professional developers
might be more interested in the development standards and legal aspects, DIY developers
are more likely to search for products by appeal and complexity. As examples of good filter
implementations, the following sites were mentioned:

19

https://docs.github.com/en/search-github
https://support.google.com/websearch/answer/2466433
https://help.duckduckgo.com/duckduckgo-help-pages/results/syntax/
https://slack.com/intl/en-gb/help/articles/202528808-Search-in-Slack
https://support.zendesk.com/hc/en-us/articles/4408886879258

• LapStore (FR)
• HardwareSchotte (FR)
• Geizhals (JP)
• Ebay (JP)

Therefore the service SHALL offer the ability to filter products by various properties. The
following properties are desired to be searchable/filterable:

• context/category/tag (FR, JP, TW)
• difficulty level for DIY (JP)
• specific license (JP, NW, TW)
• is a dedicated website available (FR)
• where/how is it used (FR)
• how often is it used (FR)
• active/inactive/archived/deprecated/missing (JP, OS, TW)
• documentation language (JP)
• description (JP)
• documentation and technology readiness levels (ODRL/OTRL) (JP, MH, NW)
• certification/attestation/standard (MH, NW, TW)
• version (MH, PJ)
• published/created date (PJ)
• number of forks (OS)
• content platform (PJ, TW)
• is the product fully open-source or does it contain proprietary components / uses only

open formats (PJ, TW)
• compatible with Git (TW)
• organization (TW)
• professional/educational/DIY (TW)
• prototype/mass produced (TW)
• what operating system the included software is usable on (e.g. Linux) (TW)

R27 The interviewees welcome the option to select and combine more than one filter at a time.
There were use cases described that require logical combinations of filters. OS mentioned the
option to use operators and a search syntax similar to the Google search syntax. So, in addition
to the required search operators, the service SHALL also include filtering using boolean logic
(and/or/not). (JP, MH, NW, OS).

20

https://www.lapstore.de
https://www.hardwareschotte.de
https://geizhals.de
https://www.ebay.de

R28 When using discrete inputs for each filter, such as select boxes, for example, MH suggests
displaying the number of remaining elements after filtering right beside the input elements.
This could help the user decide which filters to employ to reduce the number of results and find
the desired products. Showing aggregated results for each filter is nice-to-have and SHOULD
therefore be implemented if possible.

R29 There are use cases that require the same search query to be rerun at a later point in time. For
example, one could formulate a query and evaluate the search results over an extended period of
time to perform a trend analysis. JP gave the example of storing search query URLs in bookmarks
and revisiting them again later on. A different issue was brought up by NW, which can be
resolved by encoding the search query in the URL as well. He liked the possibility of reloading
the search page and keeping the previously issued search. Accordingly, the service SHALL encode
the search query as query parameters in the URL, so they can be easily bookmarked, copied,
shared, and rerun at a later point in time.

R30 JP and NW pointed out that the license filter in the demonstrator is not very descriptive, and it
is unclear what the difference between a ”Permissive” and a ”Weak Copyleft” license is. They
proposed to give hints about the meaning and usage of each filter. The service therefore SHALL
explain and optionally give a usage example for each filter. For more in-depth details, there
SHOULD also be a reference to the syntax documentation.

R31 FR expressed the difficulty of finding the desired products because of search term ambiguity.
Because of unknown user intention and unknown context, it is not almost clear how to interpret
a search query. Identifying ambiguities and adequately handling them is a difficult thing to do.
FR proposed to include synonyms in the search, so, for example, when searching for engine, the
search would also consider the term motor. Such a synonym search SHOULD be regarded as an
optional search option.

R32 The search syntax SHALL be similar to the Lucene syntax. GitHub and Google use a Lucene-
derived syntax, which many users are already familiar with. These users should have no
problems adjusting to using the service search syntax.

R33 To avoid irritating the user, syntax errors SHALL be handled gracefully. When such an error
occurs, the search query SHALL be parsed as best as possible, and appropriate results SHALL be
displayed. This way, the search outcome might not reflect what the user desired, but it won’t
discourage the user as much.

R34 Because Search Operators can offer a profound insight into a dataset, they can be ”abused” to
extract hidden sensitive information stored within the dataset. This technique of hacking is
called dorking. Dorking makes extensive use of operators to search for particular combination
terms. As a result, one may find documents that are not meant for public consumption or
valuable information about target systems that can be used to uncover security flaws and attack
vectors. With that in mind, some efforts SHOULD be made to remove sensitive information
before they are stored in the database.

R35 The number of operators and filters is potentially large. Displaying all available options by
default would result in a cluttered user interface and discourage new users. Therefore, the
number of displayed elements in the web interface SHALL be limited by default. The user SHALL
still be able to access all available operators and filters if desired.

21

R35-1 The basic search interface SHALL consist only of the search query input. It SHALL
support the full search syntax and functionality, but SHALL hide the complexity, which
would overwhelm novice users.

R35-2 The advanced interface SHALL enable the user to construct a search query without the
need to consult the documentation first. A possible solution could be the approach that
GitHub employs on its advanced search page. In addition to the search input field, an
input field for every important operator is offered. Each time the user inputs a value into
one of these fields, the associated operator and inputted value are added as a term to the
search query.

Search Order

Search Order defines the display order of the search results. Depending on the information needs, the
user can specify to sort the results by one or more properties in ascending or descending order.

R36 The interviewees unanimously wished for an option to control the display order of the results.
Therefore the service SHALL offer such a feature. The following product properties should be
considered for ordering:

• Name
• Language
• State (Activeness)
• Popularity/Star Count (OS)
• Fork Count
• Version
• Created At
• Last Updated At
• License Name/ID
• License Type
• Licensor Name
• Host
• Relevance (Best Match)

R37 Search results SHOULD be sortable by relevance so that the ”best” matching results will be
prioritized and ordered appropriately. This requires the service to rate and prioritize results.

22

Pagination

Pagination is the process of splitting content into discrete pages. It limits the content on one page and
prevents the server and client from overloading. For example, the results for a search request might
be delivered with ten results per page instead of returning a potentially massive amount of data.

R38 Instead of cycling through pages, it is more convenient to display as many results on one page as
JP stated. A single page that continues to show more results as one scrolls down is favorable. If
it proves to be infeasible, the user SHALL at least be able to set the number of search results per
page. Per default, ten results SHALL be shown per page, but the user SHALL be able to increase
the number to 20, 50, or 100 results per page. This functionality is also requested by NW.

Presentation of Results

There is no single way of presenting the product information. Different display styles serve different
purposes. For example, while data tables are well suited to display heavy data with many properties in
a compact form, a card-style presentation with large preview images might be more visually pleasing
and better suited for showcase purposes.

R39 As mentioned before, there are several ways to present product information. The interviewees
were presented with different options and asked for their preferences in that regard. JP prefers
a card-style overview to showcase the products. MH also suggests using a list/card style as a
form of a gallery as default but also have the option to display the results in table form. A table
view would make it easier to compare and sort results as desired. TW praised the platform
Knowable for its differentiation between workspace and showcase. The workspace presents
the maker with all information while the showcase offers an overview for general users. TW
suggested adapting the concept and using cards for showcasing products, while other views
might provide deeper insights. Hence, the service SHALL offer different presentation styles from
which the user can choose. Supported SHALL be a table-style view and a card-style view. The
latter one SHALL be used as default.

R40 Today, many users use their smartphones to browse the web. Even though the service is focused
more on professional use where the primary input device is most likely a PC, there SHALL also
optimized mobile view for smartphones and similar handheld devices (TW).

R41 FR and JP criticized the display of the product versions in the demonstrator. It doesn’t add
meaningful value to the search results and leads to confusion. In general, each product has a
large set of information properties. Not all of these properties carry the same information value.
They are also not inherently comparable between different products. Displaying all product
information simultaneously would clutter the user interface without adding additional value to
the user. Therefore, it is vital to provide a meaningful selection of properties to be displayed.
Per default, only properties SHALL be selected that are most relevant and/or are comparable
between different products. The following properties are considered for inclusion:

• Product Name (OS)
• Product Image (JP, FR, OS)
• Description (OS)

23

• Documentation Language
• Author
• State/Activeness (OS)
• Number of Forks (OS)
• Number of Stars (OS)
• Version in Combination with Creation Date (TW)
• Category (TW)

R42 Depending on the use case FR is interested in a specific subset of properties to be displayed. He
desires an option to customize the default selection of properties on a by-search basis. Therefore
the user SHOULD be able to make their selection of properties to be displayed in the search
results overview.

R43 JP, FR, OS and PJ mentioned the importance of preview images. Almost all platforms showcase
preview images of the products so that the user gets a general idea by just glancing over
them. Because of the value that preview images add, the service SHALL also present preview
images. The original product images must be therefore indexed alongside the general product
information. PJ also suggested generating preview images from 3D volume models if the creator
provided no avatar.

R44 FR proposed to include a catalog of synonyms. Product categories, names, and other properties
could then be extended with one or more synonyms. The user would then be able to select
synonyms to discover similar but differently named products quickly. The service SHOULD
integrate a set of synonyms for different languages and give the user a choice to search by
synonym to discover more products. There are some synonym datasets freely available. For
example WordNet and OpenThesaurus offer lexical databases for download.

R45 FR and JP mentioned the use of tooltips. Even though the interface is supposed to be simple and
intuitive, each input element SHOULD feature a helpful tooltip describing its use and optionally
additional information.

R46 The value of the dataset not only stems from the number of products, components, and other
elements in that dataset but also the relationships between these elements. In the opinion of FR
and PJ, those relationships SHOULD be made visible and explorable through visualization such
as interconnected bubbles, a visualization style most prominently used by the Neo4j database.
An online example of that feature can be seen at connectedpapers.com.

R47 Products, where 3D models are available, can be visualized with a web-based 3D editor. FR
proposed to add highlighting to proprietary components, so it is immediately evident which
parts are open-source and which are not.

R48 An interesting opportunity was described by FR to add a rough location map of where OSH
products are created. This can potentially help identify manufacturers and accelerate the
product creation process. In that regard, the service SHOULD collected rough location data
where possible and offer a simple map for the user to explore.

24

https://wordnet.princeton.edu/download
https://www.openthesaurus.de/about/download
https://www.connectedpapers.com

R49 Displaying the search results in the overview can only include a small selection of collected
information for each product. A dedicated details page SHALL be offered so MH and OS. This
details page would contain all information about one product and give the user an in-depth
view. The page SHALL list all indexed product properties, display all containing components
and SHALL also link to the related semantic page. The page SHALL also feature a version history,
from which the user can select a specific product version to display. As an inspirational example,
OS suggested the work of OHO and their overview pages. PJ

R50 In the context of version history, JPmentioned a diff mechanism, where two versions of a product
could be compared side by side. This feature would allow the user to see what changed between
versions and may disclose introduced incompatibilities between two versions of a product. Such
a feature does have potential, and SHOULD therefore be implemented.

R51 The properties mentioned in the user search query SHOULD be included in the results overview
because they can be considered information of interest to the user.

Export

The search results will be displayed in a human-readable form via the service’s web interface. The
user would need to use web scrapping to get the results in a structured, machine-readable format.
This method is unreliable due to future changes to the web interface. Furthermore, the amount of
information one would receive for each result this way would be pretty limited. This issue can be
resolved by providing an export functionality. An export function would allow the product search
results to be downloaded in a machine-readable form. The server creates a document containing each
result’s information and presents it to the client to download.

R52 For research purposesMH sees great importance in the ability to export search results. He states
that comparing and processing results locally is often quite helpful. FR also sees some benefit
in evaluation and automation but generally considers the export less important. Nonetheless,
the user SHALL be able to export the results of the current page in CSV format.

R53 The number of results is potentially quite large, and exporting all of them will be relatively
computationally expensive. To protect the service against overloading, the number of exportable
results SHALL be limited to 300. This limit should be more than enough for the needs of most
users.

4.4.3. RDF Resource

To create a semantic web service, the service SHALL provide a resource lookup mechanism. Each
product, part, and other resource will be given a unique URI as an identifier. When a client requests a
resource, the URI gets dereferenced, and the user will receive a human-readable HTML document,
while a machine will receive a RDF representation.

R54 All resources SHALL be referenceable by an unambiguous URI. The URI SHOULD be concise and
preferably easily human-readable (e.g. no long chain of parameters).

25

https://en.oho.wiki

R55 A web client SHALL be able to dereference a resource URI and negotiate the desired document
type to receive. The web client sets the HTTP headers Accept and/or Accept-Language to
define the desired format. The server then answers with a 303 redirect and a Location header
where to find the document. The web client must proceed by creating a new request to the
document location. The server then again answers with the document and the appropriate
HTTP headers Content-Type, Content-Language and Content-Location.

R56 For each resource, there SHALL be a human-readable representation in the form of a web page
at domain.tld/page/<resource>. To get the location for this representation a web client
must set Accept: text/html. This will be the default when requesting the resource via a web
browser.
R56-1 The web page SHALL visually reveal the locations for corresponding RDF documents.

This way, a user can easily download an RDF representation for that resource.
R56-2 The web page SHALL also contain in its header <link> elements that point to the

corresponding RDF documents, e.g.: <link rel="alternate" type="text/turtle"
href="xxx" title="Structured Descriptor Document (Turtle format)"/>

R57 For each resource there SHALL be a Turtle RDF representation at domain.tld/data/ttl/<resource>.
To get the representation location, a web client must set Accept: text/turtle when request-
ing the resource by URI.

R58 For each resource there SHALL be a N-Triples representation at domain.tld/data/ntriples/<resource>.
To get the representation location, a web client must set Accept: application/n-triples
when requesting the resource by URI.

4.4.4. API

An Application Programming Interface (API) is a technique for two or more systems to communicate
with each other via defined protocols. A API endpoint allows programmers to connect to the service
and use its functionality in their applications.

R59 The service SHOULD offer a GraphQL endpoint at domain.tld/graphql. Users could then use
the endpoint to query resources easily and receive results in structured, machine-readable JSON.
R59-1 The GraphQL endpoint SHOULD provide access to the service search functionality.
R59-2 The GraphQL SHOULD give ”direct” access to the underlying dataset.

R60 The service SHOULD offer a SPARQL endpoint to provide an RDF native method to perform
complex queries. The endpoint should be available at domain.tld/sparql

R61 Long-running, resource-intensive queries can harm the service’s operation and availability. API
request SHALL therefore be rate limited.

26

5. Design and Implementation

This section contains high-level details about some of the design and implementation choices and
challenges. In addition, the underlying problems are described, and the reasoning behind the design
and implementation is explained.

5.1. System Architecture

The entire application is written in the Go1 programming language. To mention some of the benefits of
Go: It is a type-safe language and has built-in memory management while still being more performant
and resource efficient than Java, it has a robust standard library and rich ecosystem of community
packages, it compiles blazing fast and has many more aspects that make it attractive for modern days
applications.
The application in this work consists of three components, two of which are developed within this work
and one external software module. A network diagram of the components is depicted in Figure 5.1.

• Crawler: The crawler is a bot program that automatically collects metadata and technical
documentation from selected platforms. It is responsible for finding product data, parsing
it, extracting relevant information, checking conformance with the OKH-LOSH specification,
and adding eligible products to the search index. More details about the crawler and its
implementation can be found in Section 5.3.

• Web Interface: The web interface allows users to interact with the service. It offers a convenient
way to search and filter products, parts, and other entities based on their properties and
relationships. Furthermore, it provides a semantic structure to access information based on
URIs using well-established SW technologies. In Section 5.4 we offer some insights into the
functionality behind the product search and SW data access.

• Database: The database is used to store and manage product information. This includes
metadata, technical information, and references to where to find the product’s design source. In
addition, the database plays a crucial role in the product search, since most of the search logic is
directly executed there. In this work we decided to use Dgraph, a graph database instead of a
more conventional relational database such as MariaDB2 or PostgreSQL3. In Section 5.2 we go
into details about why and how we used the database and what data schema we came up with.

1 https://go.dev
2 https://mariadb.com
3 https://www.postgresql.org

27

https://go.dev
https://mariadb.com
https://www.postgresql.org

Figure 5.1.: Network Diagram

The following sections cover some interesting aspects, choices, and challenges we encountered while
implementing the service.

5.1.1. Reasoning for a New Implementation

A demonstrator has been developed as part of the OPENNEXT LOSH project. The technological choices
and utilized components proved inadequate for the given use case. And because the used components
are an integral part of the whole system, they cannot easily be removed and replaced. Therefore, we
decided to create a new implementation for the whole service instead of reusing and improving the
existing service.
We compiled a list of reasons that speak against the demonstrator as a basis for future developments:

• Wikibase is designed to be used within the MediaWiki wiki and offers only a bare minimum
external API for developers. The full extent of features can thus only be used from within
MediaWiki. The demonstrator is designed as a dedicated service that uses Wikibase for storage
but does not build on MediaWiki. In order to deal with the API limitations, a plugin called

28

WikibaseReconcileEdit4 has been developed. It offers additional endpoints for Wikibase data
access and modifications but is still very limited in functionality. Missing API features lead
to the exploitation of the other databases in the architecture to provide at least a minimum
set of service functionality. For example, Wikibase does not offer full-text search by itself but
relies on the full-text search capabilities of ElasticSearch. The Wikibase API doesn’t expose
this functionality; thus, the LOSH Backend application has to query the ElasticSearch database
directly.

• The demonstrator relies on three database systems to work. All product data must be duplicated
and synced between these three datasets, thereby burning computing and memory resources.
The reasoning for using these three technologies is simple. Wikibase doesn’t offer full-text
search or a SPARQL endpoint and must rely on additional services to provide these features.

• The entire architecture is too complex to set up, and there was insufficient documentation
on that matter. As a result, the developers of the crawler and LOSH Frontend applications
connected directly to the production environment to develop and debug the software. Ideally,
the developers can easily set up a local or at least dedicated development environment for
development purposes without the need to ask for access to the production environment.

• A range of different programming languages, frameworks, and environments are used in the
project. Node.js, Python, PHP, and Java, just to name a few. This makes it really hard for any
single developer to comprehend and contribute to the project.

Building a new service from the ground up allowed us to tailor a system specific to the use case of the
thesis. In general, it offered us the following advantages:

• Using a programming language of our choice
• Design a simple and efficient system architecture
• Reuse of functionality and libraries across components for an internally consistent system
• Allow us to focus more on the aspect of usability and user experience

5.1.2. Notable Components, Libraries and Frameworks

Dgraph

Dgraph5 is a distributed graph database and is developed by Dgraph Labs. It offers a wide set of
features, notably [23]:

• Native GraphQL: Dgraph offers native support for GraphQL. It is not restricted to data access.
Dgraph also allows to define the database data schema directly as a GraphQL schema and auto-
matically generates a CRUD (Create, Receive, Update, Delete) API for accessing and managing
the data.

4 https://github.com/wmde/WikibaseReconcileEdit
5 https://dgraph.io

29

https://github.com/wmde/WikibaseReconcileEdit
https://dgraph.io

• Powerful Query Language: Dgraphs supports GraphQL, but its functionality is somewhat limited.
Thus, Dgraph offers a custom query language called DQL, which allows harnessing the complete
feature set of Dgraph. The query language is based on GraphQL and extends its features to meet
the requirements of the database.

• Full-Text Search: Full-Text search with stemming and more are built into the database and do
not require an additional third-party service. Full-text search is available for all text-based data.
All that is needed is a full-text index on the desired data fields.

• Custom Logic with Lambdas: Custom logic allows to extend the database with data fields,
resolvers, mutations, and webhooks. The custom logic can be written in JavaScript or Go and
deployed on a serverless platform.

• Horizontal Scalable: Dgraph employs sharding in order to shard data across multiple servers. It
automatically synchronizes changes with all database instances within the cluster.

• Transactional Queries: Dgraph offers transactional queries with ACID (Atomicity, Consistency,
Isolation, Durability) properties. It guarantees high levels of data integrity and availability.

Dgraph is offered as open-source under a community license. Furthermore, a paid enterprise version
is available that offers additional features not included in the open-source version, such as Full and
Incremental Backups, Data At Rest Encryption, and more.
The software is entirely written in Go, which fits nicely into the service’s overall Go architecture and
is likely easy to adapt when the need occurs.

Fiber

Fiber6 is a Go web framework, that is inspired by the popular Express.js for Node.js. It is built on top of
Fasthttp, one of the fastest7 HTTP engines for the Go programming language. As such, Fiber combines
the ease of use of the Express.js framework with the performance of Go for building high-performance
web applications and web APIs.
Fiber provides robust routing, templating, error-handling and more. In addition, the request-response
cycle can be extended through middleware with additional functionality such as request logging or
compression.
Fiber is developed as a community effort and released as open-source under the MIT license.

Liquid

Liquid8 is a templating engine created by Shopify. It is intended as a customer-facing template
language to allow easy and flexible theming for web applications. It is used by various services,
including Shopify itself, SalesForce, Zendesk, and many more. The language has a similar grammar
as Django9 or Jinja10, and is thus easy for developers with a Python background to learn.
6 https://gofiber.io
7 https://github.com/savsgio/atreugo#benchmark
8 https://shopify.github.io/liquid/
9 https://www.djangoproject.com

10 https://jinja.palletsprojects.com/en/latest/

30

https://gofiber.io
https://github.com/savsgio/atreugo#benchmark
https://shopify.github.io/liquid/
https://www.djangoproject.com
https://jinja.palletsprojects.com/en/latest/

The template engine is written in Ruby and used in the popular Jekyll11 static site generator. Jekyll
combines Liquid templating with Markdown and HTML/CSS to generate easily deployable static
websites hosted with a plain web server without needing additional software and dependencies.
As a personal effort of a developer to reimplement Jekyll in Go, the Liquid templating engine was
ported to Go12. The port of Liquid and some plugins of the Go Jekyll implementation are used to
implement the service that is part of this thesis.
Both the original Liquid template engine and the Go implementation are licensed under the terms of
the MIT license.

Tabler

Tabler13 is a UI web kit. It is build on Bootstrap14, a free and open-source HTML/CSS framework for
building responsive, mobile-ready, web front-ends. Tabler offers a coherent, modern style and a wide
variety of ready-to-use UI components and templates. It is suitable for modern websites, especially
interactive dashboards with various visual elements for presentation and interaction. To name a few
components and features that Tabler offers:

• Input Forms (buttons, text input boxes, etc.)
• Modals
• Tables
• Drop-Down Menus
• Galleries
• Icons

The templates and demo page contents are provided as a Jekyll environment. The templates are
written in the Liquid language and use Jekyll and some custom filters and tags. To reuse the Tabler-
provided templates and avoid larger modifications, the Go Liquid implementation and some Go Jekyll
components are used in the service implementation.
Tabler is licensed and distributed under the MIT license.

Participle

Participle15 is a Go library for generating parsers.
A parser is a syntactic analyzer. It is used to analyze a string of symbols in the form of a computer
or natural language and turn it into an Abstract Syntax Tree (AST). The input string must conform
to a formal grammar to be parsable and return meaningful results. This grammar can be expressed
in different forms, e.g., the Extended Backus–Naur Form (EBNF). Now, a parser generator takes a
11 https://jekyllrb.com
12 https://github.com/osteele/gojekyll
13 https://tabler.io
14 https://getbootstrap.com
15 https://github.com/alecthomas/participle

31

https://jekyllrb.com
https://github.com/osteele/gojekyll
https://tabler.io
https://getbootstrap.com
https://github.com/alecthomas/participle

grammar expression and creates a parser in the target programming language that can decipher an
input language based on that grammar. It is also possible to encode the logic to parse a language
manually. These types of parsers are typically referred to as handwritten parsers. Handwritten parsers
usually perform better and are more flexible when handling invalid inputs, but they are more labor
intensive and harder to maintain.
Participle belongs to the category of parser generators. Rather than taking the grammar as a separate
file, the Participle approach combines the grammar with the data model of the AST. This is accom-
plished by the Go native struct tags annotations, which are commonly used for data encoding and
other forms of data processing. Mapping an input to a field works by annotating it with the fitting
grammar. The grammar itself is defined in a Participle specific syntax.
Participle is open-source and released under the terms of the MIT license.

5.2. Database and Data Model

The database is used for the storage of product information. All the product metadata and technical
documentation that is collected by the crawler, along with service-related data, is stored in a structured
format in the database. Besides data storage and simple data access, the database also plays a crucial
role in the product search. A user-submitted search query gets translated to a database query and is
executed by the database. More details on the search functionality can be found in Section 5.4.1.
Dgraph was chosen as a database for this work. Dgraph is a graph database, meaning the data is
stored as a knowledge graph using the notion of Nodes and Edges. Data is attached to Nodes, which are
interconnected via edges to express relations between the data nodes. Relational databases such as
MariaDB or PostgreSQL rely on data tables and a fixed schema to store the data. Graph databases do
not require a predefined schema and are thus very flexible and can be changed more easily throughout
the application’s lifetime. We prefer to choose a graph database over a relational database because of
the following reasons:

• A Graph database expresses relations between data entities by connecting nodes via edges. This
allows the database to resolve and access related data by simply following edges in the graph.
Graph databases are a good fit for datasets whose value lies primarily in relations between the
data. Relational databases rely on Joins to express relations. These are quite costly, which is why
relational databases, despite their name, are less optimal for workloads with many relationships.

• The product information that we collect from various platforms varies quite a lot in quality and
quantity. Many products are provided with only a minimal set of metadata. Thus, our dataset
contains a lot of sparse data. Graph databases perform better than relational databases when it
comes to sparse data such as ours.

• Graph databases do not require a schema to store data and are more flexible regarding data
model changes. Since our data model changed multiple times and is still evolving, graph
databases proved to be a good fit.

• Most of the relational databases only provide fundamental text search functionality. For a
full-text search that is comparable to Google’s text search, an additional service, like another
document-based database, must be used. Dgraph natively supports full-text search, making it
preferable in our use case.

32

• RDF as a SW technology is based on a graph structure. It can be implemented on top of relational
databases, but directly using a graph database is advantageous.

Even though no data schema is required to get started with Dgraph, going without one is not recom-
mended. For our work, we created a data schema that is derived from the LOSH specification. The
specification is intended for documentation purposes and thus cannot be used without modifications.
Therefore, we designed a data model suitable for this work’s use case that shares similarities with
the LOSH specification. As Dgraph allows us to define the schema as a regular GraphQL schema, we
created and documented the data model using GraphQL. From there, we implemented the model as a
recursive, graph-like data structure that is used by the crawler and web interface components.
A short excerpt of the data model is presented in Listing 1.

1 interface CrawlerMeta {
2 discoveredAt: DateTime! @search
3 lastIndexedAt: DateTime! @search
4 dataSource: Repository!
5 }
6 type Product implements Node & CrawlerMeta {
7 name: String! @search(by: [hash, fulltext, regexp])
8 releases: [Component!]! @hasInverse(field: product)
9 # ...

10 }
11 type Component implements Node & CrawlerMeta {
12 name: String! @search(by: [hash, fulltext, regexp])
13 description: String! @search(by: [fulltext, regexp])
14 version: String! @search
15 repository: Repository!
16 license: License
17 licensor: UserOrGroup!
18 # ...
19 }

Listing 1: Data Model Excerpt

5.3. Crawler

A Web Crawler, also known as Spider or Bot, is a program that automatically scours the internet to find
and extract information of interest. It does so by following links, downloading documents, extracting
relevant information, and organizing discovered information in a structured manner for later retrieval
and usage. Crawlers are mostly used by search engines like Google (called Googlebot). Search engine
crawlers crawl large portions of the public internet, create an index that functions as a catalog of
information for efficient lookup, and make it possible for users to search and find things on the web
they desire. There are more use cases. To name a few: Aggregators for news or business intelligence

33

sites or harvesters of supposedly private and confidential data for spamming/phishing purposes [24],
[25].
For the purpose of this thesis, the crawler is used to automatically collect metadata and technical
documentation from selected platforms. It is responsible for parsing the data, extracting relevant
information about hardware products, checking conformance with the LOSH specification, and storing
it in the database. Unlike regular web crawlers, the crawler for this project only has to navigate and
index selected platforms and not the entire web. Furthermore, instead of crawling HTML documents
and extracting information via text mining, platform-provided APIs, if available, are used to get
product metadata in a structured format.
The crawler in this work primarily performs two operations: discovering products and updating them.
The discovering operation refers to a process of finding relevant products that provide at least a
minimum set of mandatory information, and adding the product to the index. The update operation
checks already known and indexed products for changes and updates the indexed information
accordingly. As security and availability of the whole service are taken seriously, any user-generated
collected data is sanitized by removing HTML and other elements before it is stored in the index.
The high-level process steps of the discovery and update operations are depicted in Figure 5.2 and
Figure 5.3. Figure 5.4, 5.5, 5.6 and 5.7 are concerned with lower-level details that shall not be
discussed here.
A few challenges need to be overcome when designing and implementing a crawler. Some of these
challenges are related to the unstructured nature of most web documents and the need for text
mining. Other challenges regard the selection and update process of information. However, there
are four challenges that essentially every kind of crawler needs to overcome in order to guarantee an
up-to-date data index and stable operation. Those are the challenges that are addressed in this work.
The following sections cover the implemented solutions.

34

For Each Product in Batch

Load State

Create & Execute
Query To Get A List
Of Products [Batch]
(Request Resource)

Success

Failure:
Persistent Error

Failure:
Temporary Error

Failure:
Persistent Error

Reschedule Job
For Later

Save State Delete State

noyes Has Next
Batch?

Success

yes

no

Entry Exists?

Get Product Entry
From Database

Discover Products

Success

Update Product
Entry

Reschedule Job
For Later

Skip ProductNext Product

Success

Request Product
Information

Failure:
Persistent Error

Failure:
Persistent Error

Failure:
Temporary Error

Failure:
Temporary Error

Figure 5.2.: Discover Products Flowchart

Update Products

Get Filtered List
Of Products

(For Single Platform)
From Database

For Each Product

Success

Apply Re-Visit Policy

Success Or
Failure: Persistent Error

Failure:
Temporary Error

Request Product
Information

Success

Update Product
Entry

Reschedule Job
For Later

Skip ProductNext Product

Failure:
Persistent Error

Failure:
Temporary Error

Figure 5.3.: Update Products Flowchart

35

For Each Version

Add Product
Entry

Store Product
In Database

yes
Product Was
Renamed?

Replace Product
Entry With Redirect

To New Entry

Failure:
Temporary Error

Get Product Version
Information

no

yes
Version Already

In Database?

Failure:
Persistent Error Or
Non Conformant

Failure:
Temporary Error

Skip

Add To
Data Model

no

Remove Versions From
Data Model That
Are Not Present

On Platform

Figure 5.4.: Add Product Entry Flowchart

Update Product
Entry

Success

no
Add Product

Entry
Delete Product

Entry From
Database

yes

Failure:
Persistent Error

Product
Found On
Platform?

Failure:
Persistent Error

Failure:
Temporary Error

Success

Figure 5.5.: Update Product Entry Flowchart

36

yes

no

Fetch Resource

yes

noIs Content
Valid?

Failure:
Persistent Error

Success:
Return Content

yes

no

Retry Count > X

Increment
Retry Count

no

Fetch Failed?

Delay

Request Resource

no
Wait Time
Reachead?

Failure:
Temporary Error

no

yes

Rate Limit
Reset < 5 min

Set Wait Time

yes

Follow Redirect

yes

Redirect Loop?Is Redirect?

Failure:
Temporary Error

Tmp Error: Rate Limit

Pers Error

Tmp Error: Other

Request Product
Information

yes Additional Data
Needed?

no

no

Check
Compliance?

Normalize Data
(➜ Data Model)

Failure:
Non Conformant

Success:
Return Product

Information

Failure:
Persistent Error

Create & Execute
Query To Get
Information

(Request Resource) Failure:
Temporary Error

yes

Conforms
Specification?yes

Enrich with
Crawler Metadata

no

Figure 5.6.: Request Resource Flowchart Figure 5.7.: Request Product Information
Flowchart

37

Data Selection Policy

Data selection refers to a scheme of selecting potentially interesting content from a large pool of data.
In the context of this thesis, we are only interested in hardware-related information that we find
on selected platforms such as Wikifactory, Thingiverse, or GitHub. Thus, the developed crawler is
explicitly tailored to this use case. Even though the crawler is limited to a few selected platforms, the
search space is rather large and is subject to growth in the future. Despite the amount, newly created
products need to be found in a reasonable timeframe, and already indexed products need to be kept
up-to-date. Therefore a selection scheme has been implemented to guarantee efficient operation.
Some of the platforms offer access to their data via an API. Considering there is no single standard
for data access on these platforms, each platform needs to be treated individually, and thus no single
selection scheme can be deployed. To offer a sense of what the data selection entails, we offer two
examples with two different hosting platforms:

• Wikifactory: Wikifactory is a product development workspace and hardware hosting service. It
offers a GraphQL API that allows iterating over all projects on the platform. Furthermore, it lets
us query a large set of information about the projects and their creators, making it easy to index
the products on the platform. Getting all information of a single project involves most likely
multiple database calls and is a rather slow process. Considering that a large number of projects
do not include the mandatory information needed to be included by our service, it would be a
waste of time and resources to simply request all projects along with the full set of data from the
platform. A selection has to be made. For discovering products, a query is issued that requests
only the mandatory information to check the conformance conditions of each product. When a
product is deemed conformant, another query is issued to receive the entirety of the product’s
information.

• GitHub: GitHub is a hosting service mostly used for software development. It uses Git for version
control which can be used for more than software development as some makers already manage
and upload their hardware creations using Git. If makers include a OKH (see Section 3.3) or
LOSH (see Section 3.4) spec file and name it with a prefix of okh, then it might be eligible for
inclusion in the search index. GitHub contains more than 200 million repositories [26], of which
only a tiny fraction are hardware-related repositories.
Files can be accessed and downloaded from GitHub via Git. Additionally, GitHub offers a
GraphQL API and REST API for accessing repository metadata. Going through all repositories
and millions of files is unfeasible. Using Git, we could download each repository’s contents
and check for files with a name prefix of okh but that would require us to download terabytes
of data. Also, iterating through all repositories metadata using the provided APIs is also not
doable because those are tightly restricted and limited. Therefore, we rely on GitHub’s code
search, which allows searching for specific lines of codes or specific files. The crawler uses the
code search to find eligible repositories, downloads the spec file, checks the conformance, and
indexes the product. The code search has a series of limitations, which we won’t discuss, that
may result in an incomplete dataset with some of the products on GitHub being missing in our
search service.

38

Re-Visit Policy

Already indexed products need to be revisited to check if any updates are available. The current
implementation is kept simple and needs some optimization in the future. The general re-visit and
update process is depicted in Figure 5.5.
When a product is discovered and indexed, it is enriched metadata from the crawler to remember
the product’s source, when it was discovered, and when it was last indexed. This information is used
by the crawler in the update process. The update process is periodically triggered by a timer. Once
it is triggered, a database query is performed that returns all products from a specific platform that
have a last updated time greater than one week. For each of these products, the crawler gathers the
information from the source platform and compares it to the already indexed data. Any changes will
be saved in the index alongside an updated last updated timestamp.
To reduce the frequency and amount of products to update each cycle, a future implementation should
consider a more refined re-visit policy that takes the update frequency and popularity of products
into account. More active products could be updated more often, while less active products could be
held off for a longer time.

Politeness Policy

The crawler generates potentially thousands of data-intensive queries in a short time. These requests
can strain the target platform and degrade its performance. Best practice dictates that the speed and
number of requests per time need to be limited. Otherwise, if the platform providers feel pressured,
they may take action and block the crawler entirely. Therefore, a politeness policy was implemented
that limits the number of requests and spreads them over a longer period of time.
This mechanism is implemented through a Requester component that is used for any kind of outbound
requests such as GraphQL or REST queries and file downloads. The Requester can be configured
with a limit of total requests or a limit of requests within a specific time frame. It keeps track of the
performed requests and delays or stops consecutive requests when the configured threshold limit is
reached.

Parallelization Policy

The service is not intended to be the next big player on the market and compete with established
search engines such as Google. Still, the underlying architecture shall be efficient and reasonably
scalable. At the start, the service implementation only includes support for one or two platforms, but
the portfolio is bound to grow in the future. As such, multiple crawler instances need to be executed
in parallel to provide fast updates to the index for various source platforms.
Parallelization for the crawler in this work is rather straightforward. Multiple platforms are crawled in
parallel, but each platform is only be accessed by one crawler instance at a time. The different crawler
instances are configured only to crawl specific platforms without overlap between them. Therefore,
there is no need for a synchronization mechanism at this point.

39

5.4. Web Interface

The web interface is the primary way to interact with the service. It offers the service’s full capabilities,
including the product search and SW data access. The interface consists of multiple pages and views:

• Homepage: The Homepage, depicted in Figure 5.8, is the first page the users see when visiting
the service. Currently, it only offers a simple hero section with a very short introduction and a
search bar to get started with the product page. When a user enters a search query, they get
automatically forwarded to the search page. In the future, more sections might be added for a
more detailed explanation of the service and what platforms are supported for searching.

• Search Page: The Search Page embodies the main functionality of the service. It allows users to
search for OSH products of their interest and displays the results in either a card-style showcase
format or in a table/list-style format. The implementation details for the product search are
presented in Section 5.4.1. The search page consists of a multitude of input and control elements
to perform the search and govern the results’ filtering, ordering, and display. Figure 5.9 depicts
the page and its elements. The elements are as follows:

– Search Query Input: ➊ The Search Query Input is the primary text input for formulating a
search query. The users can start by typing keywords that describe the thing their searching
for and later on narrow the results down by adding search operators.

– Query Cheat Sheet Toggle: ➋ The Query Cheat Sheet, depicted in Figure 5.10, offers an
overview of the search query syntax and the available search operators. The cheat sheet is
quite extensive and might be a little intimidating at first; therefore, users can toggle the
cheat sheet on and off, so it won’t get in their way. For convenience, the users can click on
the options listed in the sheet and it will automatically be added to the search query.

– Selection of Order: ➌ Ordering of the results is one of the primary features that most
data query applications offer. The service lets the user choose the property and direction

Figure 5.8.: Homepage

40

(ascending/descending) to order via a simple select box. The table view also allows the
users to sort by pressing the table headers of properties.

– Selection of Presentation Style: ➍ The results can be displayed in one of two forms, either
in a card-style showcase or a table-style overview. The users can choose the view by clicking
on the button located on the right on top of the results view.

– Results in Card Form: ➎ The card-style view offers a showcase of the results with a large,
prominent image of the product, the product name, description, along with other basic
product properties. The view is intended for regular users that want to discover products
by appeal.

– Results in Table Form: ➏ The table-style view offers an overview of the results and allows
users to quickly compare properties of different products.

– Results Export: ➐ The results can be exported in currently two formats, comma-separated
values (CSV) and tab-separated values (TSV). All a user has to do for the export is to
perform a search and select the desired format from the export drop-down button. The
export then exports up to 300 results in the selected format.

– Pagination Controls: ➑ The pagination controls allow the users to cycle through the result
pages and control the number of results to display on each page.

• Details Pages: The Details Pages display all the information that has been collected by the
service for entities such as Products, Licensors and Licenses. The pages are intended to offer
coherent, in-depth insights into the different entities without seeking out the source platforms.

– Product Details Page: The product details page (Figure 5.11) presents the product
metadata➊ in a simple, visually appealing form. In addition, it features a gallery of images
➋ that are associated with the product, like images from used components, etc. Once the
users are satisfied with a product, they can go to the source repository via the dominant
button ➌ at the bottom of the details page.

– Licensor Details Page: The licensor details page (Figure 5.12) displays the creator’s
information: name, description, avatar image ➊, and a list of their products ➋.

– License Details Page: The license details page (Figure 5.13) features an overview of the
license properties ➊ and the actual content of that license ➋.

• RDF Resource Page: The RDF Resource Page offers an overview of all properties of data entities.
It is part of the SW implementation of the service as described in Section 5.4.2. As depicted
in Figure 5.14, the page displays the information in list form ➊ and offers a download of the
resource in a specific format ➋.

41

Figure 5.9.: Product Search Results Page

42

Figure 5.10.: Query Syntax Cheat Sheet

Figure 5.11.: Product Details Page

43

Figure 5.12.: Licensor Details Page

Figure 5.13.: License Details Page

44

Figure 5.14.: RDF Resource Page

Multiple libraries and frameworks are involved in driving the web interface. First, there is Fiber. Fiber
is used as an HTTP framework for the application. When the application is executed, Fiber starts a
multithreaded web server and listens for HTTP requests. Once a request reaches the server, Fiber
reads the request’s URL path and looks for a matching route. The route determines the controller
to be used for handling that specific request. If no route was found, Fiber returns a 404 - Not Found
HTTP error code. The selected controller contains the logic for handling the request. It parses any
path and/or query parameters, calls the business logic for the desired operation, encodes the results
in HTML or another format, and sends a response to the requesting client.
We chose Tabler as a UI kit for the service. It offers a wide variety of ready-to-use UI components
and templates in a coherent, modern style, making it a suitable and easy-to-use solution for our
service. However, as the UI kit is developed for use with the static site generator Jekyll, it does take
some effort to integrate it into our Go application. Jekyll uses the Liquid templating engine and adds
its own filters and tags for additional functionality and ease of use. The templates provided with
Tabler are all written in Liquid and use some of these additional Jekyll filters and tags. Therefore, we
needed a Liquid implementation and some of the aforementioned Jekyll-specific filters and tags in Go
to use the templates without rewriting them in a different templating language. Fortunately, there
is an open source implementation of Liquid and Jekyll in Go. The Go Liquid implementation was
integrated into our application along with some selected filters and tags and is now used to render
the Tabler-provided templates. It has to be said that the Go implementation of Liquid is not as mature
as the original Ruby implementation and thus required us to add and fix some of its functionality to
make it work.

45

5.4.1. Product Search

The Product Search is the main functionality offered by the web service. It allows users to search for
OSH products of their interest by issuing a Search Query and receiving the results through the web
interface. This section covers the implementation specifics of the product search functionality.
The execution flow of the product search is depicted in Figure 5.15. As it can be seen, the search
involves multiple processing steps and a call to the database. Generally, it can be said that the database
is the component that performs the search, filters and sorts results, and returns them in a paginated
manner. The backend acts more or less as a translation layer for the search query. In words, the
execution flow is as follows:

1. The user uses their browser to issue a search by sending a query to the web service.
2. The service receives the request and handles it according to the rules as depicted in Figure 5.16.

Generally, this involves any kind of error handling.
3. As a next step, the server parses the search query and turns it into a AST representation. The

section parsing of the query is explained in more detail in the Query Parsing section.
4. The parsed search query cannot be understood by the database and must therefore be translated.

The server takes the AST query presentation and creates a DQL database query. The translation
is covered in the DQL Database Query section.

5. Now, the server executes the DQL query by sending it to the database and waiting for results.
6. Once the database returns the results, the server can continue to process the results.
7. For the described search request, the results need to be encoded as an HTML page. The server

generates the results HTML page and returns it to the user who requested it.

User DatabaseWeb Interface

Issue Search Request

Handle Request

Parse Search Query

Translate To DQL
Database Query

Execute DQL Query

Return Results

Render HTML Page
For Displaying ResultsReturn HTML Page

Figure 5.15.: Product Search Sequence Diagram

46

Build Database
Query From

Search Query

Execute Database
Query

Turn Results
Into Data Model

Search Request
/search?<params>

Parse Query
Parameters

(query, sort, page,
limit)

noParameters
Valid?

Set Invalid
Parameters To

Their Default Value

no

yes

Search Query
Valid?

Parse Search
Query String

yes

200 Response
Result Page

Handle General
Client/Server

Errors

Figure 5.16.: Handle Search Request Flowchart

Search Query

As stated in Section 4.4.2, the Search Query is a phrase, a combination of keywords and operators
used to retrieve specific information from a data set. In the case of the thesis, the query is intended for
searching and finding OSH products that are indexed by the crawler and stored within the database.
It is designed to be easy for new-time users to understand and yet powerful enough for advanced
users to find OSH products based on complex questions.

Query Definition

The power of the query syntax stems from the full-text search and wide variety of Search Operators
built into the service. The syntax is inspired by the syntax of different existing search engines and
services on the web, notably Google and GitHub. Users familiar with the Google syntax should not
have too big of a struggle and may only need a short time to adjust to the syntax presented by us.
The syntax used by us is explained using a few examples:

(tables OR desks) has:license starCount:>0

This example translates to a search for a product that has something to do with tables or desks and has
a license and has at least one star. The syntax showcases the ability to combine multiple keywords and

47

operators with different logical operations (AND/OR/NOT). The text terms tables and desks are treated
as full-text search terms. By the rules of full-text search, the terms are preprocessed as explained
in section 4.3. If no logical operation is supplied between the individual terms, then AND is implied.
The OR condition is grouped using parentheses (). The grouping is required because the implied AND
condition has a higher priority than the OR condition. The operations priority is as follows:

1. Parentheses (Grouping)
2. NOT
3. AND
4. OR

The operators always have the structure operator:expression, where the expression refers to a
type of value comparison. In the given first example, the has operator checks if the data property
for the value license is defined and non-null. The starCount operator accepts numbers and allows
comparison operations such as equal to, greater as, etc.

("car engine" OR "electric * motor") is:licensePermissive createdAt:2019-01-01..2022-01-01

This example answers the following question: What products do have a permissive license, are created
in the period from 2019 to 2022, and have something to do with engines? The terms enclosed with
double quotes are searched literally. So the search engine will search for products containing the
exact string car engine or electric * motor, where the asterisk (*) acts as a placeholder that will
accept any phrase and thus match electric tesla motor for example. The text search is generally
case-insensitive.
A summarization of the full query syntax and available operators can be found in the appendices in
Section D.

48

Query Parsing

To analyze and evaluate the search query, a query parser was implemented. The implementation
is based on the parser generator Participle. The grammar to analyze the syntax is not defined by
itself but rather directly combined with the AST data model. That data model is represented as plain
Go structs. The query grammar is defined and directly mapped to each field using Go’s struct tag
annotations. An excerpt of the grammar definition using the Participle approach is shown in Listing 2.
For the sake of presenting, the grammar was converted to EBNF and is showcased in Listing 3.
Figure 5.17 shows the same grammar in the form of a railroad diagram. The non-terminals, enclosed
in angle brackets (<>), are defined by the lexer and are omitted for brevity.
The grammar captures the general structure of the query language. What is not reflected in the
grammar are the operator-specific values. For example, the createdAt operator takes a date or time
duration and allows for different comparison operations. For instance, createdAt:<6m expresses a
creation date of less than 6 month. On the other hand, the operator license only accepts input as
strings and cannot be compared using lower/greater expressions. Instead of defining a grammar for
each operator individually, the parsing is deferred to a later stage in the processing pipeline. The
parser simply captures the value for each operator expression as text.
Due to the limitations of generated parsers regarding error handling, the grammar is more convoluted
than necessary. The reason is that a user may provide an invalid syntax, triggering a parser error if
the grammar is too strict. So instead, the parser tries to handle invalid operator syntax by interpreting
simply as a full-text search. The goal is to deal with syntax errors gracefully and not confront the
user with every little mistake their make. The behavior is designed to be similar to Google’s approach,
which focuses on providing a robust search.

type Operator struct {
Name string `@Identifier ":"`
Comparison *Comparison `(@@`
Range *Range `| @@`
Value *Text `| @@)?`

}

type Range struct {
OpenStart bool `(@"*"`
Start *string `| @QuotedString | (@String | @Identifier | @Keyword | @Number

| @Specials)+) DoubleDot`
OpenEnd bool `(@"*"`
End *string `| @QuotedString | (@String | @Identifier | @Keyword | @Number

| @Specials)+)`
}

Listing 2: Example of Go struct annotations including the query grammar

49

Query = OrCondition (<whitespace> ("OR" | "|") <whitespace> OrCondition)* .
OrCondition = AndCondition ((<whitespace> ("AND" | "&") <whitespace> AndCondition)

| (<whitespace> AndCondition))* .
AndCondition = ("NOT" <whitespace> AndCondition) | ("-" AndCondition) | Expression .
Expression = Operator | Text | ("(" Query ")") | <whitespace> .
Operator = <identifier> ":" (Comparison | Range | Text)? .
Comparison = (("=" "=") | ("!" "=") | ("<" "=") | "<" | (">" "=") | ">") Text .
Text = <quotedstring> | (<backtickquotedstring> | ((<identifier> | <number> | <string>

| <specials>) (<identifier> | <keyword> | <number> | <string> | <specials>)*)) .
Range = ("*" | <quotedstring> | (<string> | <identifier> | <keyword> | <number>

| <specials>)+) <doubledot> ("*" | <quotedstring> | (<string> | <identifier>
| <keyword> | <number> | <specials>)+) .

Listing 3: Query Syntax EBNF

Query

OrCondition whitespace OR

|

whitespace OrCondition

OrCondition

AndCondition whitespace AND

&

whitespace AndCondition

whitespace AndCondition

AndCondition Expression
NOT whitespace AndCondition

- AndCondition

Expression

Operator

Text

(Query)

whitespace

Operator Text
identifier : Comparison

Range

Text

quotedstring

backtickquotedstring

identifier

number

string

specials

identifier

keyword

number

string

specials

Comparison Range
= =

! =

< =

<

> =

>

Text *

quotedstring

string

identifier

keyword

number

specials

doubledot *

quotedstring

string

identifier

keyword

number

specials

Figure 5.17.: Query Syntax Railroad Diagram

50

The following is an example of a valid but suboptimal search query. The parser analyzes the query
and turns it into an AST, as shown in Listing 4.

(table desk) (createdAt:2019-01-01..2022-01-01 is:)

1 &parser.Query
2 Or: []*parser.OrCondition
3 And: []*parser.AndCondition
4 Operand: &parser.Expression
5 Sub: &parser.Query
6 Or: []*parser.OrCondition
7 And: []*parser.AndCondition
8 Operand: &parser.Expression
9 Text: &parser.Text

10 Words: &"electric",
11 Operand: &parser.Expression
12 Text: &parser.Text
13 Words: &"motor",
14 Operand: &parser.Expression
15 Sub: &parser.Query
16 Or: []*parser.OrCondition
17 And: []*parser.AndCondition
18 Operand: &parser.Expression
19 Operator: &parser.Operator
20 Name: "createdAt",
21 Range: &parser.Range
22 Start: &"2019-01-01",
23 End: &"2022-01-01",
24 Operand: &parser.Expression
25 Operator: &parser.Operator
26 Name: "is",

Listing 4: Resulting AST for the search query: (table desk)
(createdAt:2019-01-01..2022-01-01 is:)

After analyzing the input string and turning it into an AST, a clean-up routine is performed to remove
empty terms and simplify the AST. Of course, the AST could be used as is, and a valid database
query could be generated from it. However, considering the overhead for executing a fairly complex
database query, it is more efficient to simplify the data model in an early stage of processing. The
cleaned and simplified version of the aforementioned AST is presented in Listing 5. As we can see, the
depth of the tree has been reduced. Furthermore, the terms electric (Listing 4 line 10) and motor
(Listing 4 line 13) have been combined into a single term (Listing 5 line 15). The latter is passed
directly to the database for a full-text search.

51

1 &parser.Query
2 Or: []*parser.OrCondition
3 And: []*parser.AndCondition
4 Operand: &parser.Expression
5 Operator: &parser.Operator
6 Name: "createdAt",
7 Range: &parser.Range
8 Start: &"2019-01-01",
9 End: &"2022-01-01",

10 Operand: &parser.Expression
11 Operator: &parser.Operator
12 Name: "is",
13 Operand: &parser.Expression
14 Text: &parser.Text
15 Words: &"electric motor",

Listing 5: Cleaned and simplified AST for the search query: (table desk)
(createdAt:2019-01-01..2022-01-01 is:)

DQL Database Query

DQL is Dgraph’s query language that allows for full data access and is used to retrieve the results for
the product search.
Performance wise it is infeasible to retrieve all the data from the database and performing the search
in the service backend. It would require a large amount of memory resource to keep the product
data in memory all at once and would be highly CPU intensive to perform a full read every time a
search is performed. The data could be kept and cached in memory, but then a cache invalidation
strategy must also be implemented to keep the data from the database and the data in the backend’s
memory in sync. Thus, all the searching, filtering and sorting is performed solely by the database.
The backend is responsible for parsing the search query, creating and running a database query, and
processing and presenting the search results.
The AST of the parsed and simplified search query has to be turned into a DQL database query. This is
done by a custom encoder, that takes the parsed AST and turns it into a serialized DQL query. At the
time of writing there were no production ready solutions for creating DQL queries programmatically,
therefore a custom solution was developed. The encoder translates the concepts of the search query
into the equivalent DQL constructs. Listing 6 and Listing 7 show the translation result for the example
search query (license:MIT OR license:CC-BY*) furniture has:image.

52

1 query q($a1: string, $a2: string, $a3: string, $a4: string, $a5: string, $first: int, $offset: int) {
2 # license:MIT - translated to full-text search in License.xid field
3 v1 as var(func:type(Product)) @cascade {Product.release {Component.license
4 @filter(allofterms(License.xid, $a1)) {uid}}}
5 # license:CC-BY* - translated to regular expression search in License.xid field
6 v2 as var(func:type(Product)) @cascade {Product.release {Component.license
7 @filter(regexp(License.xid, $a2)) {uid}}}
8 # license:MIT OR license:CC-BY* - combines results of aforementioned license searches
9 v3 as var(func:uid(v1,v2)) {uid}

10

11 # has:image - translated to 'has' filter for Component.image field
12 # logical 'AND' combination created by simply filtering previous matches
13 v4 as var(func:uid(v3)) @cascade {Product.release @filter(has(Component.image)){uid}}
14

15 # furniture - translated to full-text search in Product.name, Product.description
16 # and Tag.name
17 v5 as var(func:uid(v4)) @filter((alloftext(Product.name, $a3))
18 OR (alloftext(Product.description, $a4))) {uid}
19 v6 as var(func:uid(v4)) @cascade {Product.tags @filter(alloftext(Tag.name, $a5)) {uid}}
20 v7 as var(func:uid(v5,v6)) {uid} # OR combination
21

22 # define variable for ordering by product name
23 var(func:uid(v7)) {order as Product.name}
24

25 # data selections and ordering
26 q(func: uid(v7), first: $first, offset: $offset, orderasc: val(order)) {
27 # data selectors
28 Product.name
29 ...
30 }
31 }

Listing 6: Search query translated to DQL query

1 {
2 "$a1": "MIT",
3 "$a2": "/CC-BY(\\s*\\S*)?/i",
4 "$a3": "furniture", "$a4": "furniture", "$a5": "furniture",
5 "$first": 100,
6 "$offset": 0
7 }

Listing 7: Input Variables for translated DQL query

53

5.4.2. Semantic Web

This work focuses primarily on offering a usable and satisfactory OSH search engine. Providing
access to the dataset via SW technologies is only a secondary goal. As such, the implementation of
SW technologies is kept rather simple and only features basic functionality. RDF is used for data
interchange. As described in Section 2.2, RDF is a key technology of the SW and is used to describe
and exchange data in graph form. Because the service already stores and handles product information
as graph data, it is relatively easy to translate it into an RDF format. The data model of the service is
inspired by the LOSH specification (Section 3.4) but is not quite the same. Therefore, there doesn’t
exist a well-defined RDF schema which is required to describe the RDF resources. So, we chose to
omit the schema and settle on a free-form representation for now.
Users can look up data entities by sending a request to the RDF service’s resource endpoint. A unique
ID and URI identify the entities. The execution flow is depicted in Figure 5.18 and Figure 5.19. In
words, the execution flow is as follows:

1. The client requests a resource from the service RDF endpoint (/rdf/resource/<ID>) and
specifies the desired return format using the Accept and/or Accept-Language HTTP headers.

2. If the format specified by the user is known to the server, the server dereferences the resource
and responds with an HTTP redirect to the location responsible for handling the resource repre-
sentation and data exchange. That location would be either a HTML page (/rdf/page/<ID>)
or a machine-readable RDF format (/rdf/data/<format>/<ID>).

3. The client then has to follow the redirect to get to the data by sending a new HTTP request.
4. At last, the server receives the request and either creates an HTML page for viewing the resource

with a web browser or, if requested, returns the data in an RDF serialized format.

Handle
RDF Resource Request

/rdf/resource/<ID>

Handle General
Client/Server

Errors

text/html
or */*

text/turtle

other

"Accept"
Header Is

303 Response
Location:

/rdf/page/<ID>

303 Response
Location:

/rdf/data/ttl/<ID>

303 Response
Location:

/rdf/data/ntriples/<ID>

406 Reponse
"Not Acceptable"

application/n-triples

Handle RDF Res. Rep.
Request (Web Page)

/rdf/page/<ID>

Handle RDF Res. Rep.
Request (RDF)

/data/<format>/<ID>

Handle General
Client/Server

Errors

Handle General
Client/Server

Errors

200 Response
Resource

HTML Page

200 Response
Resource RDF

Representation

Figure 5.18.: Handle RDF Resource Request
Flowchart

Figure 5.19.: Handle RDF Resource
Representation Request Flowchart

54

6. Evaluation and Validation

6.1. Introduction to Usability Testing

The concepts of usability and user experience are defined by the International Organization for
Standardization as [27]:

• Usability: ”extent to which a system, product or service can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use.”

• User experience: ”person’s perceptions and responses resulting from the use and/or anticipated
use of a product, system or service.”

In order to work well, a system must provide a function to solve a goal, be easy to use, and offer a
good user experience. A poorly designed product or service exhibits low usability and a poor user
experience leading to confusion, annoyance, stress, and ultimately to delays, erroneous decisions,
and failures in the user’s workflow.
Usability Testing is an activity in the product design process to evaluate the design of a product. The
goal of the testing is to check if the product or service meets the requirements and satisfies the user’s
needs. The results help identify problems in the design, implementation, and other aspects of the
product or service and provide a set of actions to improve the system.
Usability testing involves a researcher/evaluator knowledgeable in the product or service domain
and a sufficient number of users with preferably diverse backgrounds, skills, and preferences. The
participants are asked to solve a set of tasks to interact with the product or service. In terms of
software, the users have to interact with different aspects of the applications to solve the given tasks.
They have to concern themselves with the software’s available views, forms, and modals while telling
their experiences with it. This method is referred to as ”thinking aloud.” The users speak about their
expectations, reasoning behind any actions, and experience with the application. The evaluator takes
a passive role in observing the participants and taking notes. Usually, the testing is recorded to capture
every moment of the interaction and allow a more in-depth performance evaluation.
Usability testing can be differentiated into qualitative and quantitative testing. The focus of qualitative
testing is on collecting insights into how users interact and use a product or service. This method
helps to reveal functional or usability problems. On the other hand, quantitative usability testing
focuses on collecting metrics for benchmarks. For example, the success/failure rate is measured, or
the total required time for solving a task.
For this thesis, a qualitative usability testing has been performed. The goal was to determine the user’s
satisfaction in working with the developed web service and point out chances for future improvements.
The results are presented in Section 6.3.

55

6.2. Methodology

The usability testing was conducted with five previously interviewed volunteers from the requirement
assessment phase. The profiles of the participants can be found in the appendices in Section C. The
participants were asked to solve a set of prepared tasks (Section B in appendices) and instructed to
think out loud while interacting with the application. After each task, the participants were asked
to elaborate on their experience and describe any difficulties they might have encountered. During
testing, the communication and commentary from our side have been kept to a minimum to get
unbiased, genuine insights into the first-time experience of the participants with the software. Only
after the testing has been concluded more in-depth information about the development has been
offered, and further questions have been answered.
The interviews were analyzed by going through the recordings and extracting relevant issues. The
issues are identified by listening to the verbalized thoughts and observing the participant’s behavior
and interaction with the applications. For example, signs of issues can be:

• Direct verbal articulation of problems
• Expressions of surprise
• Expressions of frustration, struggle and uncertainty
• Needing multiple attempts and performing unnecessary actions to solve a task
• Assistance is required to solve a task
• User missing information or steps to solve a task
• Mental overloading due to complex information
• Unmet assumptions because the application violates common standards and conventions
• Unexpected results even if the tasks were correctly solved

Not all issues strictly stem from the participants’ performance or are even noted as issues by the
participants. For example, when going through the recordings, some problems that were legitimate
bugs in the software became apparent to us but remained unnoticed by the users.
Not every issue is equally important. Rating the issues and prioritizing them helps to identify the
most crucial problems and gives a measure of importance to resolving the issues. For this purpose, the
issues identified in the usability testing have been rated and categorized into the following categories
[28]:

• Positive: Positive issues are qualities of the application, functional or presentational, that the
participants appreciate. Improvements are not ruled out, but in the current state, no action is
required. The qualities can be kept as is.

• Idea: Ideas reflect the participants’ desire to change the application’s functionality or appearance.
These suggestions target properties that were not previously in design scope and can serve as
opportunities to improve the user experience.

• Bug: Bugs are functional or visual application flaws. Anything that doesn’t work or appear as
designed can be considered a bug.

56

• Minor: A short moment of hesitation and uncertainty of the participants indicate a minor issue.
The application works as designed, but the participants need a brief moment to determine how
the controls work.

• Major: Major issues substantially delay and frustrate the participants. However, most of the
time, the participants can recover from the complication and solve the task.

• Critical: A critical issue is indicated by an unsolvable task or major annoyance to the participants.

The issues were documented and indexed. The documentation contains an issue description of what
happened, an image that shows the location of where the issue occurred, the category and a possible
solution for resolving the issues.

6.3. Results

This section contains the results of the usability testing. As explained, the issues are categorized,
sorted and indexed. For each addressable issue a redesign proposal is offered. This proposal explains
a possible solution and how it might be implemented.

I1 Positive: First Impression
On the homepage, the first visible section is the hero section,
with its notable blue animated background. The hero is
simplistic, visually pleasing, and was overall well received
by the participants (MH, JP, PJ). As stated by PJ, the first
impression is an important factor for mainstream adoption.
Users are more likely to use the service and get familiar with
it when the user interface is visually pleasing and easy to
use.

I2 Positive: Visual Pleasing Interface
The card style gallery and table view for displaying the search
results were praised for their pleasant and clean appear-
ance. Especially the prominent product image is said to help
the showcasing tremendously compared to the OPENNEXT
LOSH Demonstrator. (MH, PJ, TW)

I3 Positive: Interface Explained Through Tooltips
All elements do have a tooltip and explain their purpose.
Thus, users do not have trouble understanding what the
elements are used for and feel confident using the service.
(PJ, JP, TW)

57

I4 Positive: Simplistic Ordering
The results are orderable by a multitude of different proper-
ties. Defining the order is easily done using the select box or
in the table view by clicking on the appropriate table headers.
(MH, JP, OS, PJ, TW)

I5 Positive: Query Syntax Cheat Sheet
The query syntax cheat sheet offers a good overview of the
available operators and how to use the syntax. The included
examples give a hint about how each operator might be used.
Even participants with little experience building queries re-
port that it was reasonably easy to create working queries.
(MH, JP, OS)

I6 Positive: Clickable Query Syntax Cheat Sheet
Clicking on a syntax option in the query syntax sheet adds it
directly to the search query input. Thus, the user can create
queries by clicking on the desired filters. This feature was
well received. (MH, JP, PJ, TW)

I7 Positive: Long Description Text
Only the first few lines of description texts are displayed by
default. Longer description texts are cut off. The full text
is shown by hovering over the description with the mouse
cursor. This feature was well received. (MH, JP, PJ)

I8 Positive: Activeness Indicator
The product Activeness indicator on the results was noted
and was well received. (MH, JP, OS, TW)

58

I9 Positive: Export of Results
The service offers the option to export search results as CSV.
The CSV export contains a great deal of product information.
(MH, JP)

I10 Positive: Licensor Details Page
The licensor details page featuring basic information about
the user or group and an overview of all the products of that
user or group was deemed useful. (MH)

I11 Positive: License Details Page
The license details page offering an overview of the licenses,
including the license text, information about OSI approval,
and more, was well received. (MH)

I12 Idea: Query Syntax Button Naming
The button that opens the syntax cheat sheet should be
named something different than Query Syntax. JP and TW
suggested Advanced Query. MH opposes the name Advanced
Query because he associates the term with a search form
with multiple input fields and not the syntax cheat sheet.
Additional PJ suggested moving the button to the right side,
where the inputs of the other query options are located.

I13 Idea: Simplified Query Syntax Cheat Sheet
Instead of showing the full extent of the search capabilities
in the query cheat sheet, it might be better to show only a
set of common operators and reveal the full cheat sheet only
if the user clicks on an additional option. (JP, PJ)

59

I14 Idea: Query Syntax Cheat Sheet Examples
The idea of adding one or more example queries to the query
cheat sheet was proposed. It is argued that an example
helps to convey the query possibilities in a short and eas-
ily digestible manner. For example, the query (table OR
desk) has:license createdAt:<6m demonstrates the us-
age of multiple operators and logical combinations, which
already would be more than enough for most use cases. (MH,
JP)

I15 Idea: List of Operator Values
It was suggested to add a list of all available options for
operators to the syntax cheat sheet. It has been said, that
operators, such as repositoryHost, can benefit from a list
of all options being directly available to the users. (TW)

I16 Idea: Popularity instead of Stars
Not all platforms include the notion of stars and forks but may
instead use views as an index of popularity. A suggestion
was made to replace stars with a generalized popularity
measurement. (JP)

I17 Idea: Dedicated Filter Inputs
Less technical-versed users might be intimidated and discour-
aged by the query syntax. Offering dedicated filter inputs
(select boxes, slider, etc.) might lower the entry barrier for
using the service and enable less technical-versed users to
operate the search as desired. (JP, PJ)

I18 Idea: Timestamp in Export File Name
The export file should contain a timestamp in the name so
that it is immediately apparent when it was exported. (MH)

60

I19 Idea: Forks Indicator
The notion of forks is not something that every hardware
platform provides. Therefore, there will potentially be a lot
of products that do not have such kind of information. OS
doesn’t see any value in displaying the number of forks on
the details page. He argues that it is rarely of any interest to
the users. On the other hand, TW uses the number of forks
as an indicator for adoption and thus wants to keep it.

I20 Bug: Homepage Menu Drop-Down
On the homepage, the About drop-down menu does have
white-colored text on a white background, making it unread-
able. (MH, OS)
To make the text readable again, the CSS definition for the
homepage must be corrected.

I21 Bug: Unexpected Results for Exact Text Search
An exact text search for the license CC-BY-4.0 using the
query license:"CC-BY-4.0" also returns results for the
CC-BY-SA-4.0 license. This is not intended and confused the
participants. (MH)
The parser correctly recognizes the need for an exact text
search, but the database query is built incorrectly. The trans-
lation must be checked and corrected.

I22 Bug: Unexpected Results for Query With OR and AND Condi-
tions
The combination of OR and AND conditions resulted in an
incorrect database query, and in turn, completely unrelated
results were returned.
The table OR desk has:image (same as: table OR
(desk AND has:image)) is translated to a database query
equivalent to table OR desk OR has:image. The query
encoder must be corrected.

61

I23 Bug: Caching of Assets
Server caching of assets (CSS, JS, etc.) leads to some as-
sets not being properly delivered. As long as the browser
has the assets cached, the user experience won’t be affected.
Although, when requesting the assets anew, the server will
only respond with a 304 - Not Modified status code without
delivering the actual content, thereby breaking the applica-
tion. (OS)
The caching mechanism might not handle the If-Modified-
Since header correctly, which signals the server to check
modification timestamps and respond with a Last-Modified.
Correcting the header check might resolve the issue.

I24 Bug: Order By License
When sorting by license, the results that do not contain a
license are eliminated from the results set. Expected is that
results without a license are kept and sorted to the back. This
leads to an unexpected number of results being displayed
on a page. In some cases, simply a server error is returned.
This issue stems from undesired behavior of the database,
which has been discussed1 before but not entirely resolved
yet.

I25 Bug: Beyond Last Page
When going beyond the last page of results, it is expected
to be greeted with an empty page. But instead, a page with
all results without any limitations is returned. The only
limitation seems to be the database itself, which stops with
an error if the resulting data gets too large. In the latter
case, the application returns a 500 Internal Server Error to
the user.
Specifying an offset parameter in the database query that is
larger than the number of resulting elements, then the offset
and first parameters are seemingly ignored altogether, and
all results are returned. This behavior of the database must
be changed.

1 https://discuss.dgraph.io/t/expected-behaviour-for-sort-queries/7157

62

https://discuss.dgraph.io/t/expected-behaviour-for-sort-queries/7157

I26 Bug: Floating Numbers for Time Durations
When using a floating point number in time durations (e.g.
0.5y), the operator is simply ignored and incorrect results
are returned. (JP)
The parser for time durations must be changed from working
only with integer numbers to floating point numbers.

I27 Minor: No Feedback When Clicking on Syntax Option
When using the service for the first time and clicking on a
syntax option in the query cheat sheet, it is not immediately
apparent that the option is added to the query input if it is
currently not in the view. (MH, OS)
This issue can easily be resolved by providing feedback when
clicking an option that tells the user it was appended to the
search query.

I28 Minor: Different Pages When Clicking on Product Image
and Website Button
Clicking on the product image and clicking on the blue button
of a result lead to different pages. The former leads to the
product details page, the latter to the product repository
(website). The participants were confused at first. It must
be noted that the product details page was unavailable at
the time of the usability test. (MH, JP, OS, TW)
The button on the results overview is intended as a quick
link to skip the details page if desired. The details page itself
must also provide a link to the product repository so that the
users can get to the original files from there.

I29 Minor: Too Long Operator Names
The operators listed in the syntax cheat sheet are considered
too long and should be shortened. (PJ)
The operator names can be shortened by using abbreviations.
This would make them faster to type and maybe also easier
to remember.

63

I30 Minor: Confusion Because of Aliases
Aliases for some syntax options create confusion amongst
the participants. The aliases were not explicitly labeled as
aliases; thus, the participants expected a difference but did
not know what that difference would be. (MH, JP)
Aliases do not create additional value for the user. Simply
removing the aliases should be sufficient.

I31 Minor: Unclear Time Duration Definition
At first glance, it seems unclear how to correctly define a
time duration. None of the participants saw the available
description on that matter in the General Operators section.
This might be just a matter of the limited time of the testing
procedure. Intuitively the participants used the correct com-
parison operator and added m as a unit for a month to the
time duration. (MH, TW, PJ)
The definition of time durations needs to be adequately ex-
plained. A highlighted legend for explaining possible values
at the end of the sheet might be sufficient. However, a better
option might be to add more examples and utilize tooltips
to give a more in-depth description of the options.

I32 Minor: Confusing Full ISO 8601 Time Formatting
The ISO 8601 standard is used for formatting dates and times.
Currently, the full time information, including seconds,
nanoseconds, and timezone, is displayed (e.g. 2020-10-
10 16:20:24.402918 +0000 UTC). The full format was
deemed cryptic. (TW)
The time format should be changed to something more easily
human-readable. Reducing the format to just date, hours,
and minutes (2020-10-10 16:20) might be the first step.
We might also try to change it to something like Di, 20.
Sep 2022. Converting the UTC time to the user’s local time
might also benefit the user experience. The original full
ISO 8601 format could still be displayed as a tooltip when
hovering over the time field.

64

I33 Minor: Unexpected Export File Name
Sometimes, the export file filename is set to search instead
of the server configured results.csv. (MH)
This issue might be somewhat related to the caching problem.
The export function must be checked to set the default export
filename consistently.

I34 Minor: Real-World Example Values/Usage
Some examples on the query syntax cheat sheet likely do
not reflect real-world usage. For instance, the date/time
properties are all presented with an example value of >1y,
expecting the results to be older than one year. This is most
likely not something a user wants to search. (MH, JP)
Better examples should be used. For the previously men-
tioned example, it could be simply to change it to <1y, mean-
ing a product is expected to be younger than one year. Other
operators in the cheat sheet could also benefit from a more
realistic example.

I35 Minor: Naming Scheme for Views
The naming of the table view was criticized. It was expected
to be named ”list view” instead, and the symbol on the
toggle button should be something that reflects the style
better. (TW)
The view name and icon visualization should be changed to
”list.”

I36 Minor: Alphabetically Sorting of Order Options
The options for ordering in the select box are not presented
in an alphabetically ordered fashion. Furthermore, the State
(Activeness) order option was expected to be named like
Activity State or similar and thus was not found immediately.
(MH, JP, TW)
The options should be ordered, and the State (Activeness) be
renamed to reflect the user’s expectations better.

65

I37 Minor: Confusion About Ascending and Descending Order-
ing
The options to order products by activeness seem somewhat
confusing. Participants expressed that the arrows indicating
ascending or descending are slightly misleading. (JP, TW)
Instead of using arrows, we could write out the meaning to
indicate ascending or descending ordering.

I38 Minor: Non-Clickable Tags
The tags listed on the results page are not clickable as the
other elements and thus do not offer additional value. Users
expect an overview of products within a tag category. (MH)
When clicking on a tag, a search for products with this par-
ticular tag should be performed. This way, the user gets a
showcase of all products tagged with the selected tag.

I39 Minor: Hints For Misspelled Words
When faced with the first challenge, some of the participants
misspelled beehive, either leading to a reduced set of results
or no results at all (JP, PJ, TW).
The service could try to offer hints for spelling, synonyms,
and other search terms. The user could then change their
search query and get more accurate search results.

I40 Major: Uppercase Naming Convention For Logical Opera-
tors
It seems unclear that the logical operators (OR/AND/NOT)
must be written in upper case to work. The task to fix the
invalid query, where the participants had to change them or
to OR, proved quite challenging. Through removing terms
and running multiple queries, some of the participants man-
aged to find the correct solution. (MH, JP, OS, PJ, TW)
The documentation must be improved to make the naming
convention more obvious. Another approach could be to
remove the word terms and instead use only their equivalent
syntax (|,&, -).

66

I41 Major: Displaying Additional Properties
The properties defined in the search query will also be dis-
played in the results view. This sometimes leads to confusion.
When the participants have not picked up the connection be-
tween the query input and the properties showing up in the
results view, they assume unintentional and uncontrollable
behavior. When tasked to display additional properties, the
participants first resorted to ordering by that property and
expected it to show up. (MH, JP, OS, PJ, TW)
To resolve this issue, the properties should also be displayed
when they are selected for ordering. Furthermore, there
should be an option to explicitly choose the properties to
display.

I42 Major: Hints for Errors
The search is designed to be robust and work in cases of
syntax errors. Results will be returned even if the query
couldn’t be fully parsed. This behavior is similar to Google
Search and other search engines. The participants expressed
the need for some kind of assistance to help identify errors
and potential mistakes (e.g. or instead of OR). (MH, JP, PJ,
TW)
It was suggested multiple times to return results, although
potentially wrong, and hint that the query might be faulty.
The hint should be placed near the input field to be easily
spotted.

I43 Critical: Priority of OR and AND Operators
It is unclear how the logical OR works when combined with
AND and other terms. The priority of operations is not docu-
mented; thus, the participants struggled to understand that
the AND has a higher priority than OR and thus binds more
strongly, leading to unexpected search results. It was unclear
that the use of grouping through parenthesis was required.
(MH, OS, PJ, TW)
As a first quick fix, the syntax cheat sheet should be improved
by adding parenthesis directly to the example for the logical
OR statement. Furthermore, the documentation and cheat
sheet must be improved to make the operator priority more
apparent and hint at using parenthesis grouping. Providing
examples containing parenthesis should help tremendously.

67

6.4. Discussion

Positive Idea Bug Minor Major Critical
0

2

4

6

8

10

12
14

Figure 6.1.: Number of issues by category

Overall, 43 issues have been reported in the usability testing. Of these 43 issues, 11 are positive
mentions, 7 problems due to derivations from the designed behavior and 6 major and critical usability
findings. Not all of these issues do require a change or improvement; afterall, ideas are suggestions
that may or may not be considered and positive findings are used solely for verifying the concepts and
usability of the implementation. The positive feedback also helps to identify the general sentiment
towards the application, for example, if the participants are inclined or rather reluctant to use the
service in the future. The Figure 6.1 summarizes the number of issues per category. As can be seen,
most addressable issues are in the Minor category. These minor issues resulted in a short moment of
confusion and hesitation but are generally not a deal breaker. The application is still usable despite
these issues. The amount of positive feedback in relation to major and critical issues demonstrates the
overall good impression of the participants.
Several factors must be considered when designing and implementing an application with a good
usability factor and a satisfying user experience. Respecting these factors is key in order to offer the
users something that they consider to be something of value. Therefore, we reflected on the aspects
that make an application usable and satisfying to use, implemented the service, and validated our
assumptions with the usability testing. The following points summarize our thoughts and approach:

• Useful: First and foremost, the service must fulfill a need. In our case, we created a search engine
for OSH that allows the users to search for products across platforms, and thus we improved the
general discoverability of products. Our service offers a full-text search and a powerful query
syntax that allows users to search and filter by specific properties. Our service provides a more
fine-grained and faster search functionality than most hardware hosting platforms, making it
convenient and fun for users to find exactly what their are searching for.

• Usable: We provide a manageable and appealing web search interface that users can use with
their preferred web browser. Thus, the users can use the tools they are already familiar with
without needing additional software. The interface only presents the control elements that
are required to provide the search functionality. The search bar is most prominent at the top

68

of the search page, which is the primary input element. It is selected by default, so users can
immediately start typing when they visit the page. To not be overwhelmed by the sheer amount
of syntax options, the syntax cheat sheet is hidden away but can easily be accessed by the Query
Syntax button. The control elements for ordering the results and changing the display style
are grouped together. They are placed on top of the results and thus are quickly accessible
by the users. When the users scroll down and reach the end of the results, they can retrieve
more results with the pagination controls. Those let the users control the page to display the
number of results to show on each page. The layout of the control elements aligns with the
experiences and expectations of the users and thus helps to avoid unpleasant surprises. Another
point we like to mention is that the service is also usable on mobile devices. The participants
in the usability interview were all able to easily navigate the page and gave positive feedback
concerning the usability.

• Desirable: Our service was created using the Tabler web UI kit. The kit allows for building
responsive, mobile-ready web front-ends with a coherent, modern look and feel. The elements
and color scheme resemble the style of regular desktop applications and convey familiarity to
the users. The high-quality, appealing interface excited the testing participants and enticed
them to try everything themselves. Furthermore, the site offers a dark mode to which users can
switch by clicking on the corresponding symbol.

• Findable: When users first visit the site, they are greeted with the hero banner on the homepage.
The banner explains the purpose of the service and offers a search bar similar to the one on
the search page. From there, they can start their search. Another approach is to navigate to
the search page directly by clicking on the appropriate menu entry. Users can also access the
details pages from the search page to gain more in-depth information about the results. The
participants had no trouble finding pages and resources they were looking for.

• Accessible: It must be said that the application has not been developed and tested with people
with disabilities. People suffering from some form of colorblindness will most likely not encounter
any problems using the service. However, no guarantees can be given for users with more severe
disabilities.

Previous attempts to create such a search engine have not gained much traction in the community. The
original LOSH demonstrator has problems architecture and usability-wise. The offered functionality
does not provide significant value. The search seriously lacks advanced features to filter results by
properties, and the display of results is plain boring, making it unappealing for most users. Compared
to the demonstrator, our service offers far more value.

• Search Capabilities: While in generalized web searches, users mostly search content by key-
words and full-text, in use cases such as ours, the users most likely require more fine-grained
control over what to include in the search. Our advanced query syntax offers an operator-based
search that allows users to filter results by various product properties like the used license or
the date of the last update. Furthermore, the filters can be combined through logical oper-
ators (and/or/not), allowing users to answer complex questions and trim down results. On
the other hand, the OPENNEXT LOSH demonstrator only provides a keyword-based search
that returns results matching a subset of properties. Users cannot control what properties are
searched, making it impossible, for example, to search for products with a specific license. The
demonstrator employs three filters for the license strength, repository host, and organization
of the products. Only one option for each filter can be selected at a time; thus, users cannot

69

freely combine these and only filter by one value at a time. Other product properties are simply
inaccessible in the search. It is a similar story for the OKH search. It offers a keyword-based
search in addition to a simple set of filters for the product source and design file types. OHO,
as another contender, offers a keyword-based search as well. It does include far more filters
than the previously mentioned services. It lets the users filter by properties such as certification
status, if it contains software or has a bill of materials. The strength of the OHO search lies in its
category system and partly manually managed dataset. Using the category search allows for easy
exploration of related products. Our service includes user-provided tags, but those are often far
less descriptive and unbefitting. As such, categorization is a topic that we do have deficiencies
and need to improve on. In general, our service offers superior search capabilities and allows
for more complex questions to be answered compared to competing implementations.

• Display of Results: By default, our web interface offers a pleasant showcase-style overview of
the product search results. The results are each displayed with a large image, the product name,
description, tags, used license, and the licensor. The users can switch to a table/list-style view,
where the results are displayed in rows instead. It is possible to add more properties to be shown
if, for example, the users want to compare the date of creation of products. Furthermore, the
users can control the order in which the results are displayed, like sorting by name in ascending
or descending order. Comparing our service to the OPENNEXT LOSH demonstrator and the
OKH search, we see higher flexibility on our side. The demonstrator has a table-style view,
displaying the product’s name, version, license, repository, and organization. As our user testing
indicated, the users deemed the version and repository information irrelevant and would like to
see a description instead. So the demonstrator’s interface presents meaningless information in
a rather plain-looking and boring style. The OKH search does a better job. It offers a similar-
looking card-style overview to ours, displaying an image, product name, description, creator
name, and tags. Still, it is less flexible and does not provide options such as ordering or other
features and displaying different product properties. The OHO search also shows its results in a
card-style view. It contains an image, the product name, and information about included files.
The interface is very plain, old-looking, unresponsive and thus does not work well on mobile
devices. Overall our implementation does offer a more appealing and flexible display of results
than the competitors mentioned above.

Considering our achievements in providing a usable and satisfying to use search engine for OSH
hardware, we built a service that offers great value to the community, and we think it has a decent
chance to be adopted and used regularly in the future.

70

7. Conclusion and Future Work

7.1. Conclusion

The concept of open-sourcing hardware designs, implementation, and documentation is believed to
be a driver of future innovations and technological advancements, as open source in the software
sector has proven before. However, OSH is less prevalent than acOSS and still not widely accepted
by industries. To that end, the first step for widespread adoption is to improve the discoverability of
hardware designs and documentation.
In this thesis, we designed, implemented, and tested a semantic knowledge base and search engine for
OSH. The goal was to create a service that is easy and satisfying to use, improves the discoverability of
open hardware, and presents value to the OSH community. We interviewedmembers of the community
(Section 4.2) to evaluate the already existing OPENNEXT LOSH demonstrator (Section 3.4) and assess
the requirements for our system. Some of the reported needs and wishes were quite unexpected; many
of these are not even offered by any other service today. After the requirements analysis had been
concluded, we designed and implemented a service with an entirely new architecture and components.
The created service offers an advanced query syntax that allows users to search hardware products by
various properties and answer complex questions. The search is available as a web service that can be
used with any browser and device, including mobile devices. The interface was created with a strong
focus on usability and user experience to provide appealing and easy-to-use software.
We conducted a usability testing to evaluate our implementation and validate our assumptions
regarding usability and user experience. The testing showed that our service left a generally good
impression on the participants. The overall positive feedback in relation to the number and severity of
reported problems signaled us that we created a usable system with a high degree of user satisfaction.
The advanced search functionality stood out above, allowing users to answer complex questions
regarding open hardware products. The search offers more options for fine-grained filtering than
other search engines in the same field can offer. In addition, the designed web user interface provides a
more detailed and inviting overview of product information than the competing services. Furthermore,
our service includes Semantic Web (SW) technologies to allow humans and machines alike to access
the dataset and enable further research on that topic. But the user testing also revealed some issues.
Most of the usability-related problems were minor issues and could be resolved easily. Only a few
issues were in the major and critical category. We conclude our service presents a valuable asset and
has a good chance of adoption by the OSH community.

71

7.2. Future Work

It will take more effort to make the service ready for production use and a valuable addition to the
digital toolset of the OSH community. First and foremost, the issues raised in the usability testing
(Section 6.3) need to be addressed. Hereinafter, more platforms need to be added to the search index,
and the amount and quality of the collected metadata be improved.
Usability testing with a selected group of people from the OSH community was the first step to
creating a usable application and offering a satisfying user experience. However, the community’s
involvement must be strengthened further to increase the chances of adoption. It is vital to regard the
expectations and needs of the community. A key aspect is involvement through collaborative open
source development, acceptance of bug reports and feature proposals, and other means. Building
an environment that empowers community involvement is something to be done as part of future
efforts. We are already in contact with representatives of the OPENNEXT research project to discuss
the continuation of the work under their umbrella.
Product categories and tags help tremendously to find desired products and alternative solutions.
Currently, tags are collected alongside the product information, if the hardware hosting platforms
offer any. The number of tags is relatively sparse, and there is no categorization yet. The OHO
collected hardware designs from various sources and categorized the results in ∼500 categories. The
categorization was performed partly automatically and partly manually. For the LOSH search engine,
a manual categorization seems impractical because of the sheer amount of results. A fully automated
categorization and tagging system would be a useful addition to our service. It could be implemented
with a machine learning model that uses the product metadata to derive an appropriate category
and/or tags.
Information such as technology or documentation readiness is usually determined by assessing the
product and its documentation. The metrics are relatively new, and no hardware platform includes
them in their data model. Thus, there is currently no data available for these kinds of metrics.
Considering how useful this information could be to guide the decision process for the commercial
use of a product, it would be beneficial to determine these metrics automatically. Such an automatic
product assessment requires research and is something to be done as part of future work.
As described, SemanticWeb (SW) technologies can help to span a net of data by connecting information
across the boundaries of datasets. A sufficiently dense net of information can be of immense value. In
the field of OSH, this can reveal hidden truths, improve discoverability, encourage reuse and lead to
quicker technological advancements. On that note, our implementation currently lacks an RDF schema
to properly describe the vocabulary we used. This needs to be addressed in the future. Furthermore,
we need to consider how the LOSH specification fits into this equation if the offered RDF should
reflect the structure used by the service or rather should be leaned on the LOSH specification. Another
open research topic is the cross-linking of products, users, and other data entities. This needs to be
addressed in future work to tap into the true potential of the SW paradigm.

72

A. Requirements Analysis Interview Questions

A.1. Introduction

What is the Library of Open Source Hardware (LOSH) about?

• Purpose:
– Tackling the lack of discoverability across several Open Source Hardware (OSH) content-

hosting platforms
– Providing a public semantic knowledge base and search engine for OSH
– Improving the Open Source Hardware (OSH) toolset, helping the growth of the open-

hardware community and helping OSH gain wider acceptance amongst industries
• How:

– Providing a specification for OSH product metadata
– Collecting metadata and technical documentation of OSH from various platform
– Checking compliance with the specification (guarantee some level of quality)
– Providing a web service for searching and exploring OSH

• Demonstrator was developed, but due to the lack of features and usability it was not marketed
as ready to use

What is this first interview for?

• Identifying user requirements/wishes for the new LOSH service
• Involving the community and end users directly in the process of creating the service

What to expect from the interview?

• Bunch of qualitative questions, that I like you to answer (it is ok, if you have no answer for some
questions)

• Challenges using the current available LOSH demonstrator and other web services

VII

https://github.com/OPEN-NEXT/OKH-LOSH

A.2. Interview

Facts

• Name:
• Contact Information:
• Maker/Designer/Other?:
• Professional/Hobby:
• Experience with OSH? (Usage, Development, Documentation, Issue Reporting, ...):
• What kind of hardware do you work with?:
• Experience with OSS? (Usage, Development, Documentation, Issue Reporting, ...):
• What kind of software do you usually work with?:
• Consider yourself a versed computer user?:

What OSH Platforms have you heard of and used before?

What did you use the OSH platform for?

Did you notice major differences?

Challenges

• Set of tasks and questions
• Not necessarily solvable with the current demonstrator
• To find out:

– How you would approach this challenge?
– How you feel about the current implementation?
– What functionality would be required to solve the challenges?

• Disclaimer: I created large parts of the crawler component, which gathers the OSH information.
I was not involved in the storage or management of the data, also I am not responsible for the
current web interface and its functionality.

Challenge: Find a product that has something to do with ”labyrinth” and is hosted on the Wikifactory
host and get to the source web page of the product

VIII

Challenge: Find a product that has something to do with ”drawing” and has a Strong Copyleft
license and export the search results as CSV

What is your first impression on the ability to filter search results?

Do you think the filter ability needs to be improved and how? (multiple option, and/or/not combina-
tions)

Should more fields be considered for searching/filtering? (https://github.com/OPEN-NEXT/
OKH-LOSH/blob/master/sample_data/okh-TEMPLATE.toml)

What importance does exporting results play in your opinion?

Challenge: A ventilator consists of 4 submodules, one of them is a motor. It turns out that a specific
version of this motor is faulty. Which ventilator versions are affected?

What importance does versioning play and should the service index all available versions and make
them searchable?

When a product gets deleted on the host platform, should the index also be deleted? What becomes
of the projects, that link to that?

Challenge: There exists a semantic web page for every resource, which lists all the properties of
the resource and can be used to discover other relationships. Find the associated semantic web
page for the product ”OHLOOM” (https://losh.ose-germany.de/)

What do you expect of an overview page of a product?

Would you prefer a semantic resource page like that?

How would you like the search results to be displayed like? List? Cards? Other?

• Table Style: https://preview.tabler.io/tables.html
• List/Card Style: https://preview.tabler.io/lists.html
• Semantic Overview https://losh.ose-germany.de/wiki/Item:Q8684

IX

https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/sample_data/okh-TEMPLATE.toml
https://github.com/OPEN-NEXT/OKH-LOSH/blob/master/sample_data/okh-TEMPLATE.toml
https://preview.tabler.io/tables.html
https://preview.tabler.io/lists.html
https://losh.ose-germany.de/wiki/Item:Q8684

How do you feel about the current implementation? What are the good and bad parts?

What would you use the new LOSH service for, and what do you think other users would use it for?

Would companies use it differently than individual users?

For usability/functionality/look of the new LOSH service, do you have any examples of search
engines or general web interfaces that could serve as an inspiration? And why? (similar functional-
ity/interface/behavior)

Anything else you want to say?

Would you be willing to participate in another interview for evaluating the new LOSH service?

X

B. Usability Testing Tasks

Stelle dir vor du möchtest Bienen züchten und möchtest daher ein Bienenstock (beehive) bauen.
Möglicherweise gibt es freie Baupläne, die du nutzen kannst. Gehe auf die Webseite, finde ein
passendes Projekt zum Nachbauen und besorge dir den Bauplan dazu.

• What was easy or difficult about solving that task?
• What is your first impression?

Purpose:

• Introduction to the web interface, what the elements are and how to get to the product repository
from the search results

• Simple full-text search

Solution:

1. Use simple full-text ”beehive”
2. From the search results, go to the products web page to get the build instructions

Du hast auf deiner Suche nach ”3D print” einige Resultate erhalten. Nun bist du eher an aktiven
entwickelten Projekten interessiert und möchtest daher aktive Projekte in der Ansicht zuerst
anzeigen lassen. Führe das beschriebene Scenario durch.

• What was easy or difficult about solving that task?
Purpose:

• Get to know the ordering capability and how to use it

Solution:

1. Search for 3D print
2. Use the ”Order By” select box to select ”State (Activeness) ”

XI

Du hast einige Suchergebnisse für die Suche nach ”3D print” erhalten. Nun bist du interessiert an
der Popularität der Produkte. Verschaffe dir eine schnelle Übersicht (”auf einen Blick”) über die
Popularität der gefundenen Produkte.

• What was easy or difficult about solving that task?
Purpose:

• Engage with the different styles of presentation
• Use the table view for an easy overview

Solution:

1. Search for 3D print
2. Switch to table view
3. Sort by ”Start Count”

Es gibt die Möglichkeit Produkte nach ihren verschiedenen Eigenschaften zu suchen, wie z.B. nach
der verwendeten Lizenz oder welche Sprache für die Dokumentation verwendet wird. Führe eine
Suchanfragen für folgende Fragestellungen durch:

Purpose:

• Engage with operators
• One simple search query involving full-text and one or two operators
• Complex query combining and grouping operators

Produkte die etwas mit Solar zu tun haben und in den letzten 6 Monaten ein Update erhalten

Solution:

• solar lastUpdatedAt:<6m

Einen Table oder Desk das ein Bild hat und in Englisch dokumentiert ist.

Solution:

• (table | desk) has:image language:en

XII

Du hast folgende Suchanfragen ausgeführt, aber scheinbar erhältst du nicht die Ergebnisse, die du
erhofft hast. Versuche herauszufinden was das Problem zu sein scheint und behebe es.

Purpose:

• Use documentation about syntax to understand and fix the syntax

Produkte, die etwas mit print zu tun haben, aktiv und in Englisch dokumentiert sind und zusätzlich
noch eine CC-BY-XXX Lizenz haben.

print is:active language:en (license:"CC-BY-SA-1.0" OR license:"CC-BY-SA-2.0" OR license:"CC-
BY-SA-2.0-UK" OR license:"CC-BY-SA-2.1-JP" OR license:"CC-BY-SA-2.5" OR license:"CC-
BY-SA-3.0" OR license:"CC-BY-SA-3.0-AT" OR license:"CC-BY-SA-3.0-DE" OR license:"CC-
BY-SA-4.0" OR "license:CC-BY-1.0" OR "license:CC-BY-2.0" OR "license:CC-BY-2.5" OR
"license:CC-BY-2.5-AU" OR "license:CC-BY-3.0" OR "license:CC-BY-3.0-AT" OR "license:CC-
BY-3.0-DE" OR "license:CC-BY-4.0")

Solution:

• print is:active language:en (license:"CC-BY-SA-*")

Ein Produkt, das irgendetwas mit ”Motor” zu tun hat, lizenziert ist und eine gewisse Popularität hat.

motor has:license (starCount:>0 or forkCount:>0

• As Google and other search engines, the search will silently ignore bad syntax and treat most
of it as full-text search instead. This might lead to undesired results. In your opinion should
the user rather be confronted with an error or return some results, even if those won’t be as
expected?

Solution:

• motor has:license AND (starCount:>0 OR forkCount:>0)

Du möchtest eine Auswertung darüber machen, welche Produkte von einer CC-BY-SA Lizenz Ge-
brauch machen. Suche nach entsprechenden Produkten und speichere die Ergebnisse in einer
Excel-Tabelle ab.

• What was easy or difficult about solving that task?

Purpose:

• Make use of Export functionality

XIII

Solution:

1. Define query and execute query
2. Use the ”Export Results” button to receive results as CSV and open it in Excel/Libre Office/other

Du hast einige Suchergebnisse für die Suche nach ”3D print” erhalten. Du möchtest dir einen
Überblick verschaffen wann die Produkte erzeugt wurden. Wie gehst du vor?

• What was easy or difficult about solving that task?
• Is this method good enough, or do you prefer a different style of selecting result fields?

Purpose:

• Is it obvious enough to use operators to add more displayed properties?

Solution:

1. Search for 3D print createdAt: (the empty operator will be ignored in the search, but the
field will be listed in the result overview)

2. Switch to table view

XIV

C. Profiles of the Interviewees

All interviewees do have some experience and background in working with OSH and/or OSS. This
section contains the individual profiles of these interviewees. The profiles reveal the OSH affiliation
and technical background.

Interviewee: FR

• OSH Affiliation: hobby maker
• Experience with OSH DIY making
• Usually Working With: wood
• Known OSH Platforms: OHO, YouTube
• OSH Platforms Used Primarily For:

– getting inspirations

• Versed Computer User: yes
• Experience with OSS: usage, development, documentation, issue reporting
• Software Used (in Context of Working With OSH): Linux, LibreOffice, Inkscape, FreeCAD
• What Could the LOSH Search Engine Be Used For:

– getting inspiration
– evaluation of OSH (research, political)

Interviewee: JP

• OSH Affiliation: hobby maker
• Experience with OSH DIY making, usage, documentation
• Usually Working With: RaspberryPi + sensors and such
• Known OSH Platforms: GitHub, GitLab, Thingiverse, Instructables, Hackster
• OSH Platforms Used Primarily For:

– search/explore hardware/software
– categorize projects

XV

https://de.oho.wiki/
https://youtube.com/
https://github.com
https://about.gitlab.com
https://www.thingiverse.com
https://www.instructables.com
https://www.hackster.io

• Versed Computer User: yes
• Experience with OSS: usage, development, documentation, issue reporting
• Software Used (in Context of Working With OSH): Linux, Vim, VSCode, RaspberryPI (libs),

Python, GitLab, Draw.io
• What Could the LOSH Search Engine Be Used For:

– search/exploring products
– find products that are based on standard X or do have license Y (mostly companies and

professionals)
– find inspiration on how to do X
– find products where one can contribute to
– research what are the current trends in OSH

Interviewee: MH

• OSH Affiliation: professional project manager, scientist, hobby maker
• Experience with OSH usage, development, documentation, issue reporting
• Known OSH Platforms: Wikifactory, GitHub, GitLab, Thingiverse, OSHWA, OHO, Hackaday,

DocuBricks, Wikifab, OSE(G) Wiki, Appropedia and more
• OSH Platforms Used Primarily For:

– search hardware
– research related stuff
– create documentation

• Versed Computer User: yes
• Experience with OSS: usage, issue reporting, some documentation
• Software Used (in Context of Working With OSH): OpenSCAD, Scilab, Geogebra
• What Could the LOSH Search Engine Be Used For:

– searching for functionality and thereby find technologies
– research what other products in the same field integrate parts wise
– research what licenses do the other products use

XVI

https://wikifactory.com
https://github.com
https://about.gitlab.com
https://www.thingiverse.com
https://www.oshwa.org
https://de.oho.wiki/
https://hackaday.com
http://docubricks.com/software.jsp
https://wikifab.org/
https://wiki.opensourceecology.de/Open_Source_Ecology_Germany
https://www.appropedia.org/Welcome_to_Appropedia

Interviewee: NW

• OSH Affiliation: professional project management, hobby OSH user, researcher, developer of
standards

• Experience with OSH documentation/standardization, project management
• Usually Working With:

– Bee Wax Tissues
– Zink-Luft-Brennstoffzelle
– Webstuhl
– Tandemfahrrad
– Projects with a lot of software components

• Known OSH Platforms: Wikifactory, GitHub, GitLab, GrabCAD, GOSH, OSE(G) Wiki
• OSH Platforms Used Primarily For:

– search for projects
– documentation of projects
– project management
– gather contacts for help to review stuff

• Versed Computer User: yes
• Experience with OSS: usage
• Software Used (in Context of Working With OSH): LibreOffice, Gimp, OpenLCA (life cycle

assessment), OpenCAD, Etherpad, Hedgedoc, Zettlr, BBB (interviews), GitLab (git), Linux
• What Could the LOSH Search Engine Be Used For:

– get a quick overview of products with standardization
– for research questions
– high-level function, users will most likely use the platforms they are familiar with and have

their community

XVII

https://wikifactory.com
https://github.com
https://about.gitlab.com
https://grabcad.com
https://openhardware.science
https://wiki.opensourceecology.de/Open_Source_Ecology_Germany

Interviewee: OS

• OSH Affiliation: professional (Freelancer) / hobby OSH developer
• Experience with OSH usage, development, documentation, issue reporting
• Usually Working With:

– UniPro-Kit
– Zink-Luft-Zelle
– 3D Druck
– Fräse
– Nanogrid
– LibreSolar

• Known OSH Platforms: OSE(G) Wiki, OHO, Wikifactory, OpenNext, Thingiverse, YouMagine,
Instructables, YouTube

• OSH Platforms Used Primarily For:

– hosting projects
– searching for solutions
– looking for inspiration/advice
– getting in contact with other developers/makers

• Versed Computer User: very versed
• Experience with OSS: usage, development, documentation, issue reporting
• Software Used (in Context of Working With OSH): CAX, FreeCAD, KeyCAD, Arduino, IDE for

software development
• What Could the LOSH Search Engine Be Used For:

– with only knowledge about a project name find more information such as project site
– find similar projects
– find components for reuse
– to make own projects more visible

XVIII

https://wiki.opensourceecology.de/Open_Source_Ecology_Germany
https://de.oho.wiki/
https://wikifactory.com
https://opennext.eu
https://www.thingiverse.com
https://www.youmagine.com
https://www.instructables.com
https://www.youtube.com

Interviewee: PJ

• OSH Affiliation: hobby maker
• Experience with OSH presentation/documentation of projects
• Usually Working With:

– optics
– open agricultrue

• Known OSH Platforms: OSHWA, GitHub, OHO
• OSH Platforms Used Primarily For:

– search for projects
– research

• Versed Computer User: no
• Experience with OSS: almost none
• Software Used (in Context of Working With OSH): Latex
• What Could the LOSH Search Engine Be Used For:

– technology trend analysis (like evaluating patent database)

Interviewee: TW

• OSH Affiliation: hobby maker/designer, professional project manager/coordinator
• Experience with OSH usage, development, documentation, issue reporting, coordination
• Usually Working With:

– mechanical eng.
– renewable energy
– 3D print

• Known OSH Platforms: Wikifactory, GitHub, GitLab, Thingiverse, OHO, Wikifab, OSE(G) Wiki,
Printables, Envienta

• Versed Computer User: yes
• Experience with OSS: more user site, contributor (issues, ideas)
• Software Used (in Context of Working With OSH): FreeCAD, LibreOffice, Hedgedoc, GitLab
• What Could the LOSH Search Engine Be Used For:

– end users: search for solutions to use or reproduce
– product developers: market analysis, looking for existing solutions
– researcher: what is the current state of OSH projects; what projects are there

XIX

https://www.oshwa.org
https://github.com
https://de.oho.wiki/
https://wikifactory.com
https://github.com
https://about.gitlab.com
https://www.thingiverse.com
https://de.oho.wiki/
https://wikifab.org/
https://wiki.opensourceecology.de/Open_Source_Ecology_Germany
https://www.printables.com
https://platform.envienta.org

D. Query Syntax Definition

General Expressions

Term Example Description
word1 word2
`word1 word2`

nikola tesla Full Text Search - Text must contain all search words
in an arbitrary order

""
''

"nikola tesla" Exact Text Search - A word or phrase inside single
or double quotes are treated as input for an exact
text search. A text must contain the given text (case-
insensitive) to produce a match

AND
&

tablet AND pencil Logical AND - Combining a pair of two terms with AND
yields results containing both terms. This is the default
and doesn’t have to be explicitly specified

OR
|

motor OR turbine Logical OR - Combining a pair of two terms with OR
yields results containing either one or both of those
terms

NOT
-

NOT tablet
-tablet

Logical NOT - A term preceding NOT or - will be
negated and thus explicitly excluded from the results

() (motor OR turbine)
AND engine

Grouping Terms - Terms wrapped inside parenthesis
() will be treated as a group and searched together

* CC-BY-* Wildcard Text Search - An asterisk * acts as a wild-
card, meaning any phrase or word in between will be
matched

operator:expr license:MIT Operator Term - The associated properties must match
the provided expression.

Table D.1.: Query Syntax - General Expressions

XX

Text Operator Type

Properties of type Text usually combine Full-Text Search, Term Search, and/or Exact Text Search.

Expression Description
operator:word operator:
`word1 ... wordN`

Full Text Search: Text must contain all search words in an
arbitrary order

operator:"word1 ... wordN"
operator:'word1 ... wordN'

Exact Text Search: Text must contain the exact search string.
Matching is performed case-insensitive

operator:w*d
operator:"word1 * wordN"

Wildcard Text Search: Text must contain the search string. *
acts as a wildcard, meaning any phrase or word in between
will be matched

operator:=="word1 ... wordN" Exact Text Search: Text must match the whole search string
operator:!="word1 ... wordN" Exact Text Search: Text must not match the whole search

string

Table D.2.: Query Syntax - Text Operator Type

Boolean Operator Type

Properties of type Boolean are different from other types. The following expressions are defined:

Expression Description
is:property Boolean property must be true
has:property Property must be set (non-nil)

Table D.3.: Query Syntax - Boolean Operator Type

Number Operator Type

Properties of type Number can be compared in multiple ways:

Expression Description
operator:42 Number property must match the given value
operator:==42 Number property must match the given value
operator:!=42 Number property must not match the given value
operator:<42 Number property must be less than the given value

Table D.4.: Query Syntax - Number Operator Type

XXI

Expression Description
operator:<=42 Number property must be less or equal to the given value
operator:>42 Number property must be greater than the given value
operator:>=42 Number property must be greater or equal to the given value
operator:20..42 Number property must be between the given values (inclusive)

Table D.4.: Query Syntax - Number Operator Type

DateTime Operator Type

Properties of type DateTime can compared like numbers. The format for specifying date and time can
either be ISO 8601 or a time duration in the form of 1y2m3w4d (equals one year, two months, three
weeks, four days).

Expression Description
operator:2022-09-30
operator:6m

DateTime property must match the given date and time

operator:==2022-09-30
operator:==6m

DateTime property must match the given date and time

operator:!=2022-09-30
operator:!=6m

DateTime property must not match the given date and
time

operator:<2022-09-30
operator:<6m

DateTime property must be less than the given date and
time

operator:<=2022-09-30
operator:<=6m

DateTime property must be less or equal to the given date
and time

operator:>2022-09-30
operator:>6m

DateTime property must be greater than the given date
and time

operator:>=2022-09-30
operator:>=6m

DateTime property must be greater or equal to the given
date and time

operator:2022-04-01..2022-09-30
operator:6m..1y

DateTime property must be between the given values
(inclusive)

Table D.5.: Query Syntax - DateTime Operator Type

XXII

Basic Operators

Name/Example Type Description
name:beehive Text Product Name
description:beehive Text Product Description
language:language Text Alias for documentationLanguage
documentationLanguage:language Text Language used for documentation
version:1.0.0 Text Version of latest release
website:"https://github.com" Text Product Website
starCount:>0 Number Number of stars
forkCount:>0 Number Number of forks
releaseCount:>0 Text Number of releases
createdAt:<6m DateTime Date/Time of when the latest release was cre-

ated
lastUpdatedAt:<6m DateTime Date/Time of when the latest release was cre-

ated
discoveredAt:<6m DateTime Date/Time of when it was last updated
lastIndexedAt:<6m DateTime Date/Time of when it was indexed
is:active
is:inactive
is:archived
is:deprecated
is:missing

Boolean Activeness of the product.

Table D.6.: Query Syntax - Basic Operators

Categorization

Name/Example Type Description
has:category Boolean Indicates whether it has a category assigned
category:Robotics Text Alias for categoryfullname
categoryFullName:Robotics Text Full category name (e.g Computer/PSU)
categoryName:Robotics Text Alias for documentationLanguage
has:tags Boolean Indicates whether it has tags assigned
tag:3dprinting Text Tag name

Table D.7.: Query Syntax - Categorization

XXIII

Name/Example Type Description
tagCount:>0 Number Number of tags

Table D.7.: Query Syntax - Categorization

Repository

Name/Example Type Description
host:Wikifactory Boolean Alias for repository
repository:Wikifactory Text Alias for repositoryHost
repositoryHost:Wikifactory Text Host where the product is developed
repositoryOwner:John Text Full name of the repository owner
repositoryName: Text Name of repository
datasource Text Alias for datasourceHost
datasourceHost Text Host where the product was found
datasourceOwner Text Full name of the data-source owner
datasourceName Text Name of the data-source repository

Table D.8.: Query Syntax - Repository

License

Name/Example Type Description
has:license Boolean Indicates whether Product is licensed
has:hasAdditionalLicenses Boolean Indicates whether Product has other licenses
license:CC-BY-SA-4.0 Text Alias for licenseId
licenseId:CC-BY-SA-4.0 Text License SPDX Identifier
licenseName:value Text License Full Name
is:licenseSpdx Boolean License is well-known and listed on SPDX.org
is:licenseDeprecated Boolean License is marked as deprecated
is:licenseOsiApproved Boolean License is approved by OSI
is:licenseFsfLibre Boolean License is FSF approved
is:licenseBlocked Boolean License is not approved by LOSH
is:licenseStrong Boolean License is considered strong

Table D.9.: Query Syntax - License

XXIV

Name/Example Type Description
is:licenseWeak Boolean License is considered weak
is:licensePermissive Boolean License is considered permissive

Table D.9.: Query Syntax - License

XXV

Licensor

Name/Example Type Description
licensor:John Text Alias for licensorFullName
licensorFullName:John Text Licensor Full Name
licensorName:jhondoe42 Text Licensor Username
is:licensorUser Boolean Licensor is a person
is:licensorGroup Boolean Licensor is a group (organization)

Table D.10.: Query Syntax - Licensor

Files

Name/Example Type Description
has:software Boolean Indicates whether it contains software
has:image Boolean Indicates whether it has an image
has:readme Boolean Indicates whether it has a readme file
has:contributionGuide Boolean Indicates whether it has a contribution guide
has:bom Boolean Indicates whether it has bill of materials
has:manufacturingInstructions Boolean Indicates whether it has manufacturing instruc-

tions
has:userManual Boolean Indicates whether it has a user manual
has:source Boolean Indicates whether it has a source file
has:export Boolean Indicates whether it has export files
has:auxiliary Boolean Indicates whether it has auxiliary files

Table D.11.: Query Syntax - Files

Standard, Publication, Maturity, etc.

Name/Example Type Description
has:attestation Boolean Indicates whether it was attested
has:publication Boolean Indicates whether it has a publication
has:issuetracker Boolean Indicates whether it has a dedicated issue tracker
has:complieswith Boolean Indicates whether it has a standard associated

Table D.12.: Query Syntax - Standard, Publication, Maturity, etc.

XXVI

Name/Example Type Description
compliesWith:"DIN SPEC 3105" Text Complies with a standard (DIN, ISO, etc.)
has:cpcPatentClass Boolean Indicates whether it has a CPC patent class associ-

ated
cpcPatentClass:A01B Text Cooperative Patent Classification (CPC)
has:tsdc Boolean Indicates whether it has a tsdc associated
tsdc:MEC Text Technology-specific Documentation Criteria

(TSDC)

Table D.12.: Query Syntax - Standard, Publication, Maturity, etc.

XXVII

Bibliography

[1] OPENNEXT. “OPEN!NEXT – Transforming Collaborative Product Creation.” (), [Online]. Avail-
able: https://opennext.eu/ (visited on 12/03/2021).

[2] Paul Cormier. “The State of Enterprise Open Source: A Red Hat report.” (), [Online]. Available:
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-
2022 (visited on 09/20/2022).

[3] C. a. T. (C. Directorate-General for Communications Networks, K. Blind, S. Pätsch, et al., The
Impact of Open Source Software and Hardware on Technological Independence, Competitiveness
and Innovation in the EU Economy: Final Study Report. LU: Publications Office of the European
Union, 2021, isbn: 978-92-76-30980-2. [Online]. Available: https://data.europa.eu/doi/
10.2759/430161 (visited on 09/21/2022).

[4] U.S. Department of Energy. “Renewable Energy,” Energy.gov. (), [Online]. Available: https:
//www.energy.gov/eere/renewable-energy (visited on 09/20/2022).

[5] Internet of Production Alliance, “Open Know-How Specification,” Internet of Production Alliance,
Jan. 26, 2022. [Online]. Available: https://standards.internetofproduction.org/pub/
okh/release/1 (visited on 09/05/2022).

[6] OPENNEXT, OKH-LOSH, OPEN-NEXT, Nov. 25, 2021. [Online]. Available: https://github.
com/OPEN-NEXT/OKH-LOSH (visited on 11/29/2021).

[7] Martin Häuer, Erik Konietzko, Cansu Tanrikulu, Pen-Yuan Hsing, and Max Kampik, Deliverable
3.5 - Finalised demonstrators - usability-tested, verified and validated demonstrators. [Online].
Available: https://github.com/OPEN-NEXT/D3.5-Report/files/9584935/D3.5_
Validation.of.demonstrators.pdf (visited on 09/17/2022).

[8] World Wide Web Consortium. “Semantic Web.” (), [Online]. Available: https://www.w3.org/
2001/sw/ (visited on 02/14/2022).

[9] OSHWA. “About,” Open Source Hardware Association. (Apr. 7, 2012), [Online]. Available:
https://www.oshwa.org/about/ (visited on 09/01/2022).

[10] OSHWA. “Definition of Open Source Hardware,” Open Source Hardware Association. (May 26,
2012), [Online]. Available: https://www.oshwa.org/definition/ (visited on 09/01/2022).

[11] J. Bonvoisin, J. Molloy, M. Haeuer, and T. Wenzel, “Standardisation of practices in Open Source
Hardware,” Journal of Open Hardware, vol. 4, no. 1, p. 2, Aug. 19, 2020, Comment: 9 Pages
without abstract and references (else 13), no figures, issn: 2514-1708. doi: 10.5334/joh.22.
arXiv: 2004.07143. [Online]. Available: http://arxiv.org/abs/2004.07143 (visited on
02/20/2022).

[12] “SemanticWeb -W3C.” (), [Online]. Available: https://www.w3.org/standards/semanticweb/
(visited on 02/14/2022).

XXVIII

https://opennext.eu/
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://data.europa.eu/doi/10.2759/430161
https://data.europa.eu/doi/10.2759/430161
https://www.energy.gov/eere/renewable-energy
https://www.energy.gov/eere/renewable-energy
https://standards.internetofproduction.org/pub/okh/release/1
https://standards.internetofproduction.org/pub/okh/release/1
https://github.com/OPEN-NEXT/OKH-LOSH
https://github.com/OPEN-NEXT/OKH-LOSH
https://github.com/OPEN-NEXT/D3.5-Report/files/9584935/D3.5_Validation.of.demonstrators.pdf
https://github.com/OPEN-NEXT/D3.5-Report/files/9584935/D3.5_Validation.of.demonstrators.pdf
https://www.w3.org/2001/sw/
https://www.w3.org/2001/sw/
https://www.oshwa.org/about/
https://www.oshwa.org/definition/
https://doi.org/10.5334/joh.22
https://arxiv.org/abs/2004.07143
http://arxiv.org/abs/2004.07143
https://www.w3.org/standards/semanticweb/

[13] Tim Berners-Lee, Linked Data - Design Issues, Jun. 18, 2009. [Online]. Available: https:
//www.w3.org/DesignIssues/LinkedData.html (visited on 02/14/2022).

[14] World Wide Web Consortium. “Linked Data.” (), [Online]. Available: https://www.w3.org/
standards/semanticweb/data (visited on 09/08/2022).

[15] M. K. Tarakeswar and D. Kavitha, “Search engines: A study,” Journal of Computer Applications
(JCA), vol. 4, no. 1, pp. 29–33, 2011.

[16] “About the OHO Search Engine - OHO - search engine for sustainable open hardware projects.”
(), [Online]. Available: https://en.oho.wiki/wiki/About_the_OHO_Search_Engine
(visited on 01/14/2022).

[17] “About OHO Open Hardware Observatory - OHO - search engine for sustainable open hardware
projects.” (), [Online]. Available: https://en.oho.wiki/wiki/About_OHO_Open_Hardware_
Observatory (visited on 01/15/2022).

[18] “The Open Know-How Manifest Specification Version 1.0,” Barbal. (), [Online]. Available:
https://barbal.co/the-open-know-how-manifest-specification-version-1-0/
(visited on 11/29/2021).

[19] Internet of Production Alliance. “About us.” (), [Online]. Available: https://www.internetofproduction.
org/about-us (visited on 09/05/2022).

[20] Internet of Production Alliance. “Open Know-How.” (), [Online]. Available: https://www.
internetofproduction.org/open-know-how (visited on 09/05/2022).

[21] Sonika Gogineni, Martin Häuer, Elena Aleynikova, and Conny Kawohl, Wikibase instance
demonstrator - Semantic database for open linked knowledge on OSH products and services,
Jan. 10, 2022. [Online]. Available: https://github.com/OPEN-NEXT/D3.3-Report/
blob/502d5dd5595acb4cf125d63e20dcf0dfb7ababcd/D3.3_%20Wikibase%20instance%
20demonstrator.odt (visited on 04/08/2022).

[22] “Wikibase - MediaWiki.” (), [Online]. Available: https://www.mediawiki.org/wiki/
Wikibase (visited on 02/15/2022).

[23] Dgraph Labs Inc. “Dgraph - Products,” Dgraph | GraphQL Cloud Platform. (), [Online]. Available:
https://dgraph.io/products/ (visited on 09/13/2022).

[24] Cloudflare. “What is a web crawler? | Howweb spiders work,” Cloudflare. (), [Online]. Available:
https://www.cloudflare.com/learning/bots/what-is-a-web-crawler/ (visited on
09/08/2022).

[25] Yeong Su Lee. “Web Crawling.” (), [Online]. Available: https://www.cis.uni-muenchen.
de/~yeong/Kurse/ss09/WebDataMining/kap8_rev.pdf (visited on 05/10/2022).

[26] GitHub Inc. “GitHub About,” GitHub. (), [Online]. Available: https://github.com (visited
on 09/23/2022).

[27] International Organization for Standardization, Ergonomics of human-system interaction — Part
210: Human-centred design for interactive systems, 2010.

[28] M. Hertzum. “Usability testing : A practitioner’s guide to evaluating the user experience.”
(2020), [Online]. Available: https://doi.org/10.2200/S00987ED1V01Y202001HCI045.

XXIX

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
https://en.oho.wiki/wiki/About_the_OHO_Search_Engine
https://en.oho.wiki/wiki/About_OHO_Open_Hardware_Observatory
https://en.oho.wiki/wiki/About_OHO_Open_Hardware_Observatory
https://barbal.co/the-open-know-how-manifest-specification-version-1-0/
https://www.internetofproduction.org/about-us
https://www.internetofproduction.org/about-us
https://www.internetofproduction.org/open-know-how
https://www.internetofproduction.org/open-know-how
https://github.com/OPEN-NEXT/D3.3-Report/blob/502d5dd5595acb4cf125d63e20dcf0dfb7ababcd/D3.3_%20Wikibase%20instance%20demonstrator.odt
https://github.com/OPEN-NEXT/D3.3-Report/blob/502d5dd5595acb4cf125d63e20dcf0dfb7ababcd/D3.3_%20Wikibase%20instance%20demonstrator.odt
https://github.com/OPEN-NEXT/D3.3-Report/blob/502d5dd5595acb4cf125d63e20dcf0dfb7ababcd/D3.3_%20Wikibase%20instance%20demonstrator.odt
https://www.mediawiki.org/wiki/Wikibase
https://www.mediawiki.org/wiki/Wikibase
https://dgraph.io/products/
https://www.cloudflare.com/learning/bots/what-is-a-web-crawler/
https://www.cis.uni-muenchen.de/~yeong/Kurse/ss09/WebDataMining/kap8_rev.pdf
https://www.cis.uni-muenchen.de/~yeong/Kurse/ss09/WebDataMining/kap8_rev.pdf
https://github.com
https://doi.org/10.2200/S00987ED1V01Y202001HCI045

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Problem Statement

	Background
	Open Source Hardware
	Semantic Web

	Related Work
	Search Engines
	Open Hardware Observatory
	Open Know-How Specification
	OPENNEXT - Library of Open Source Hardware

	Requirements Analysis
	Introduction
	Requirements Interview
	Terminology and Conventions
	Requirements

	Design and Implementation
	System Architecture
	Database and Data Model
	Crawler
	Web Interface

	Evaluation and Validation
	Introduction to Usability Testing
	Methodology
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Requirements Analysis Interview Questions
	Introduction
	Interview

	Usability Testing Tasks
	Profiles of the Interviewees
	Query Syntax Definition
	Bibliography

