Zukunftsgeräte: Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
Zeile 1: Zeile 1:
 
== Zukunftsgeräte für Zugpferde ==
 
== Zukunftsgeräte für Zugpferde ==
 +
[[File:Zukunftsgeraete_logo3.png]]
 +
 +
=== Einführung: ===
 +
 +
Gemüseanbau mit Zugpferden und Handarbeit ist energieeffizient und bodenschonend. Auf Hof Hollergraben in Norddeutschland wird so seit 2007 Gemüse produziert. Begleitend dazu lief bis 2012 ein Forschungsprojekt. Für die weitere Entwicklung wurden zwei neue Geräte benötigt: Der Grubber "Eco Flow" und der Zwiebelleger. Beide Geräte wurden von Klaus Strüber als Prototyp konstruiert und gebaut.
 +
 +
Die Entwicklung wurde im Sommer 2014 durch eine Crowdfunding-Campagne auf Startnext erfolgreich gefundet und u.a. durch OSE unterstützt. siehe
 +
[https://www.startnext.com/hollergraben2014 Zukunftsgeräte für Zugpferde auf StarNext]
 +
 +
Dabei bringt die Bezeichnung "Zukunftsgeräte" zum Ausdruck, das der Einsatz von Zugpferden keinesfalls antquiert ist, sondern einer zukunftsorientierten Erzeugung von Lebensmitteln in vollem Umfanggerecht wird. Pferde können hoch effizient Energie aus regionaler Pflanzenmasse erzeugen. Außerdem verbessern sich schnell wichtige Grundfunktionen von Böden unter Pferdebewirtschaftung und dadurch steigen auch die Erträge. Das Arbeiten mit Zugpferden in einer Gärtnerei ist von einer wundervollen Atmosphäre geprägt. Sogar das Gemüse reagiert darauf in seiner chemischen Zusammensetzung.
 +
 +
Der globale „Weltagrarbericht“ hat 2008 Ziele für die Landwirtschaft der Zukunft gesteckt, z.B. der Energiesituation der Landwirtschaft oder zu optimalen Flächengrößen.
 +
Zugpferde bieten für viele dieser Ziele ein riesiges Potenzial – überall auf der Welt, auch bei uns. Heute und noch viel mehr Morgen.
 +
 +
Kurz: Mit Zugpferden Gemüse zu produzieren, ist sympathisch, umweltfreundlich und zukunftsweisend zugleich.
 +
 +
Die Praxis: In Norddeutschland auf dem Demeterhof Hollergraben wird seit 2008 eine Gemüsegärtnerei mit Zugpferden betrieben. Es geht! Die Böden verbessern sich, der Dieselzapfhahn verstaubt. Vermarktet wird das „pferdische“ Gemüse über eine regionale Wirtschaftsgemeinschaft (auch CSA oder SoLaWi genannt), die den Bewirtschaftern eine feste Einnahmequelle ermöglicht. Begleitend zum Gemüseanbau findet im Hollergraben ein langjähriges Forschungsprojekt („Humussphäre“) statt. Gemeinsam mit Universitäten, freien Wissenschaftlern, Stiftungen und Privatpersonen werden von 2005 bis 2012 in über 10 Teilprojekten handfesten Ergebnissen erreicht.
 +
 +
Fazit: Zugpferdeeinsatz ist praxistauglich im Gemüseanbau, braucht aber weitere Entwicklung.
  
== SolarBox ==
+
Die Baupläne sollen Open – Source gestellt werden. Jede/r soll die Geräte nachbauen können. Dafür wird das Netzwerk OSE (Open Source Ecology) genutzt.
[[File:Zukunftsgeraete_logo3.png]]
 
  
  
=== Einführung: ===
 
  
Das OpenHardware-Projekt SolarBox befasst sich mit den Grundlagen einer unabhängigen Photovoltaik-Stromversorgung und -Speicherung mittels LiFePo4-Akkus. Ein besonderer Stellenwert liegt auch auf der grafischen Visualisierung der Solardaten zur Effizienz-Kontrolle, aber auch als Grundlage für zukünftige Weiterentwicklungen des Systems.
 
  
 
=== Anwendungen ===
 
=== Anwendungen ===

Version vom 27. März 2015, 02:18 Uhr

Zukunftsgeräte für Zugpferde

Zukunftsgeraete logo3.png

Einführung:

Gemüseanbau mit Zugpferden und Handarbeit ist energieeffizient und bodenschonend. Auf Hof Hollergraben in Norddeutschland wird so seit 2007 Gemüse produziert. Begleitend dazu lief bis 2012 ein Forschungsprojekt. Für die weitere Entwicklung wurden zwei neue Geräte benötigt: Der Grubber "Eco Flow" und der Zwiebelleger. Beide Geräte wurden von Klaus Strüber als Prototyp konstruiert und gebaut.

Die Entwicklung wurde im Sommer 2014 durch eine Crowdfunding-Campagne auf Startnext erfolgreich gefundet und u.a. durch OSE unterstützt. siehe Zukunftsgeräte für Zugpferde auf StarNext

Dabei bringt die Bezeichnung "Zukunftsgeräte" zum Ausdruck, das der Einsatz von Zugpferden keinesfalls antquiert ist, sondern einer zukunftsorientierten Erzeugung von Lebensmitteln in vollem Umfanggerecht wird. Pferde können hoch effizient Energie aus regionaler Pflanzenmasse erzeugen. Außerdem verbessern sich schnell wichtige Grundfunktionen von Böden unter Pferdebewirtschaftung und dadurch steigen auch die Erträge. Das Arbeiten mit Zugpferden in einer Gärtnerei ist von einer wundervollen Atmosphäre geprägt. Sogar das Gemüse reagiert darauf in seiner chemischen Zusammensetzung.

Der globale „Weltagrarbericht“ hat 2008 Ziele für die Landwirtschaft der Zukunft gesteckt, z.B. der Energiesituation der Landwirtschaft oder zu optimalen Flächengrößen. Zugpferde bieten für viele dieser Ziele ein riesiges Potenzial – überall auf der Welt, auch bei uns. Heute und noch viel mehr Morgen.

Kurz: Mit Zugpferden Gemüse zu produzieren, ist sympathisch, umweltfreundlich und zukunftsweisend zugleich.

Die Praxis: In Norddeutschland auf dem Demeterhof Hollergraben wird seit 2008 eine Gemüsegärtnerei mit Zugpferden betrieben. Es geht! Die Böden verbessern sich, der Dieselzapfhahn verstaubt. Vermarktet wird das „pferdische“ Gemüse über eine regionale Wirtschaftsgemeinschaft (auch CSA oder SoLaWi genannt), die den Bewirtschaftern eine feste Einnahmequelle ermöglicht. Begleitend zum Gemüseanbau findet im Hollergraben ein langjähriges Forschungsprojekt („Humussphäre“) statt. Gemeinsam mit Universitäten, freien Wissenschaftlern, Stiftungen und Privatpersonen werden von 2005 bis 2012 in über 10 Teilprojekten handfesten Ergebnissen erreicht.

Fazit: Zugpferdeeinsatz ist praxistauglich im Gemüseanbau, braucht aber weitere Entwicklung.

Die Baupläne sollen Open – Source gestellt werden. Jede/r soll die Geräte nachbauen können. Dafür wird das Netzwerk OSE (Open Source Ecology) genutzt.



Anwendungen

Das Konzept beinhaltet Referenzimplementierungen auf drei unterschiedlichen Komplexitätsstufen, für jeweils drei verschiedene Anwendungsbereiche und Leistungsanforderungen:

1. Stufe: PowerBank - für mobile device Anwendungen

2. Stufe: eBike - für Pedelec

3. Stufe: BaseLoad - für autonome Stromversorgung eines Hauses


Solarbox PowerBank

Die Powerbank dient zur Versorgung mobiler Devices wie Laptop, Tablet oder iPhone. Die (zum derzeitigen Stand d. Technik) angestrebte Speichergröße liegt im Bereich von 10 bis 15 Ah bei 6 bis 12 Volt Systemspannung. Dabei kommen Solarpanels von 10 bis 20 Wp Nennleistung zum Einsatz.

Solarbox eBike

Hierbei handelt es sich um eine Art solaren Range-Extender für Pedelecs und e-Bikes. Typische Akkugrößen liegen im Bereich zwischen 360 und 540 Wh bei 36V Betriebsspannung. Damit allein kann man schon 40 bis 60Km weit fahren (mit 25 Kmh Tempo), aber wenn die Sonne scheint sollten noch größere Reichweiten möglich sein. Dies herauszufinden ist Gegenstand dieses Teilprojekts, wobei die Enwicklung eines geeigneten Ladereglers und BMS im Vordergrund steht.

Die Panelgrößen können hier variieren, zwischen kleineren Panels ab 40Wp, welche direkt am Rad befestigt werden, wie etwa am Gepäckträger, und größeren Panels bis 100Wp oder mehr, die auf einem separaten Fahradanhänger montiert sind - welcher somit auch noch Platz für einen zweiten Akku und damit noch größere Reichweiten garantiert.

SolarBox Baseload

Hierbei handelt es sich um ein Energie-Management- und Speichersystem für eine kleine Haus-Inselanlage, welches ca. 100 bis 300 W Leistung für BaseLoad-Anwendungen bereitstellten kann mit Panelleistung bis etwa 1.2KWp und Akkukapazitäten bis 2.4 KWh (8 x 100Ah-Akkus bei 24V).

Damit erreicht man zwar noch keine absolute, aber immerhin eine kleine Teilautonomie und gleichzeitig ist diese Anlagen-Klasse als System für den Einstieg hervoragend geeignet. Der Ansatz einer solaren Steckdose als "all-out-of-the-box"-Lösung stellt einen alternativen Entwurf zu den sogenannten "Guerilla-Photovoltaik"-Anlagen dar, welche in punkto Storage die Akku-Speicherung mehr oder weniger aussenvor lassen und stattdessen auf eine Grid-Connection setzen. Dies ist problematisch, weil die Gridverträglichkeit der Microinverter, oder zumindest deren Zulässigkeit erhebliche Reglementierungen beinhaltet und man sich derzeit insgesamt noch in einer rechtlichen Grauzone befindet und dieser Zustand im Hinblick auf Großwirtschaftliche Partikularinteressen möglicherweise noch länger anhalten könnte.

Bei der Solarbox hingegen hat man einfach eine separate, solare Steckdose, an die man eine wohldosierte Menge an "Grundlast"-Geräten anstöpselt, also zB. sowas wie die Tiefkühltruhe im Keller. Damit hat man eine Teilversorgung während der sonnenreichen Stunden, und täglich noch ein bischen darüberhinaus aufgrund der Akkukapazität. Dass der Akku dadurch belastet wird ist aufgrund der zu erwartenden hohen Zyklenzahl der LiFePo4-Technologie gut zu verkraften und ausserdem kann man die Zyklenzahl noch weiter erhöhen, im Abgleich mit (bzw. auf Kosten von) der Menge an täglicher Grundlast-Leistung. Wichtig hierbei ist, das eine Netz-Vorrangschaltung automatisch wieder auf Grid-Betrieb umschaltet, sobald die Akkus erschöpft sind und keine Sonne scheint.

Daher ist das umfangreiche sammeln und visualisieren von Daten zur Laufzeit und natürlich eine Benutzerschnittstelle zur detaillierten Systemsteuerung und -Konfiguration ein zentraler Aspekt sowohl von diesem als auch von den beiden anderen Teilprojekten. Es sollte damit jederzeit möglich sein, nicht nur den reinen Ertrag zu messen, also wieviel nutzbare Energie herauskommt, sondern auch den Roh-Input, also wieviel Energie, die vom Solarpanel kommt, kann am Ende dann auch tatsächlich genutzt werden. Damit wird der Wirkungsgrad des Systems transparent, der von vielen Faktoren wie Inverter, Akkus und dem Nutzerverhalten bzw. den situativen Rahmenbedingungen abhängig ist. Dies ist nicht nur für die Auswahl der Komponenten und damit die Systemkonfiguration wichtig, sondern auch, um für Weiterentwicklungen und Optimierungen eine Erfolgskontrolle zu haben.

Das OpenHardware Projekt SBMS4080 erfüllt alle Anforderungen ideal und seine Weiterentwicklung wird deswegen von OSE mit unterstützt. Wir haben dazu ein kleines SBMS4080-User-Manual verfasst, welches bei der Inbetriebnahme hilfreich sein sollte.

Rahmenbedingungen

OK, ein maximaler Ertrag aufgrund optimaler Systemkontrolle an sich ist natürlich auf jeder der drei Ebenen wünschenswert. Es ist aber ohnehin ein Ziel des Solarbox-Projektes, die Gemeinsamkeiten aller drei Skalierungslevel zu identifzieren, um daraus ein abstraktes und übergeordnetes Modell zu erstellen, welches die grundlegenden Komponenten einer Solarbox darstellt und dokumentiert.

Konzeptuelle Gemeinsamkeiten aller drei Level sind z.B:

- Lademodus CCCV

- Balancing und BMS

- Grundkomponenten wie Panels, Akku, Laderegler

- LiFePo4, 2000 Zyklen, hochstrom- und schnellladefähig

- Netzvorrangschaltung

- Daten-Visualisierung


Die Skalierung hingegen bietet die Möglichkeit den Arbeitsansatz so zu gestalten, dass man zunächst auf dem niedrigschwelligen Level der Powerbank mit der Entwicklung beginnt und die daraus gewonnen Erfahrungen dann soweit möglich auf die beiden höheren Level überträgt oder aber sich eben auf die Höherskalierung konzentriert.

Im Mittelpunkt der Entwicklung steht auf jeder Ebene die Ladereglertechnik (Hardware) und Datenvisualisierung (Software), aber auch Dinge wie die Komponentenauswahl stellt gerade für Einsteiger aufgrund eines unüberschaubaren Angebotes eine schwer zu überwindende Hürde dar. Das Internet kann ist dabei nicht unbedingt hilfreich, weil in einschlägigen Foren jeder eine andere Meinung hat, welches das beste System sei ;) .

Die Solarbox hingegen bietet Referenz-Implentierungen mit erprobten Komponenten und Bezugsquellenangaben (BOMs) und Bauplänen. Daher werden die Komponenten auch als fester Bestandteil des UniProKit Baukasten-Standards in Form eines Solar-Sets in den UniProKit-Bauteilekatalog eingegliedert.

Orientierung; ähnliche Technologien

Ladregler-Technik an sich ist nichts Neues, aber ein Grossteil davon bezieht sich auf Blei-Säure- oder NiCad/NiMh-Akkus. Im Bereich Lithium gibt es Einiges für LiPO-Akkus, das wäre theoretisch auch für LiFePO4 verwendbar, allerdings setzt das voraus, das Schwellen-Werte wie Lade- und Entlade-Schlussspannung frei prograqmmiert werden können. Bei den vielen Hersteller-Lösungen in diesem Bereich handelt es sich jedoch oft um hochintegrierte Chips, welche autonom, d.h. Nicht-uC-gesteuert, arbeiten und feste Werte sozusagen hardverdrahtet haben. D.h., man ist davon abhängig, was der Hersteller glaubt, welche Parameter sinnvoll wären. Das hängt aber wiederum von der Art der Anwendung ab, also z.B. ob man die Akku-Kapazität unbedingt bis zum letzten Quentchen ausnutzen möchte (z.B. Modellflug-Anwendung, oder Mobile-Devices) oder aber gezielt darauf verzichtet, etwa zugunsten einer Verfielfachung der Zyklenzahl (Inselanlage-Storage). Ausserdem ist die LiFePO4-Technologie noch relativ jung, so das teilweise noch gar nicht so richtig klar ist, welche Parameter tatsächlich optimal sind und was die Anzahl an bereits verfügbaren Lösungen deutlich einschränkt.

Weitere Einschränkung ergibt sich dadurch, dass der Laderegler auch "solarfähig" sein soll und dadurch, dass Laden und Entladen quasi gleichzeitig möglich sein müssen. D.h., z.B. für Pedelecs oder Modellflug verfügbare Laderegler gehen davon aus, dass der Akku während der Ladephase vom Pedelec abgeklemmt ist und nicht gleichzeitig auch genutzt wird.

Dadurch bedingt, und durch die LiFePO4-spezifischen Anforderungen an Balancing/Equalizing und BMS ergibt sich, das ein passender Laderegler keineswegs eine triviale Sache ist. Sofern hier überhaupt bereits verfügbare Lösungen existieren (was aber eher nicht der Fall ist), sind sie sehr teuer, was eine Eigenentwicklung erforderlich macht.

In Bezug auf die Skalierbarkeit ist noch anzumerken, das theoretisch noch zwei höhere Level denkbar wären, das wäre zum einen ein großes Haus-System mit bis zu 30KWp Panelleistung und zum anderen ein Speicher-Kit zum Umrüsten eines Autos auf Elektroantrieb, mit Speicherkapazitäten von 20KWh. Aber in beiden Bereichen gibt es bereits anderweitige kompetente Lösungen und zum anderen würde man damit sowohl von den technischen als auch von den "reglementativen" Anforderungen her in Bereiche vordringen wo eine Entwicklungsarbeit weit jenseits dessen liegt, was wir mit unseren derzeitgen Möglichkeiten stemmen könnten.

Organisatorisches

Entwickler-Team

Oliver Schlüter (Hauptverantwortlicher Ansprechpartner)

Roadmap and Log

  • 02.09.2014 Projektstart
  • 13.09.2014 Projekt-Seite im Wiki erstellt

Aktueller Entwicklungs-Status

13.09.2014 Das Projekt befindet sich noch in der Planungs- und Evaluierungs-Phase. Als Einstieg wird zunächst versucht, einen einfachen Solar-Laderregler für LiFePo4-Akkus im Sinne der ersten Stufe "Solarbox Powerbank" zu entwickeln, als Grundlage und um sich der LiFePO4-Technologie überhaupt erstmal anzunähern.

ToDo next

  • SolarBox-PowerBank als Proof-of-Concept entwickeln
  • Untergeordnete WIKI-Seiten für die drei Teilprojekte erstellen

Open Tasks

  • Wiki-Projektseite:
    • Bildmaterial, Grafiken, Skizzen
    • Ausführliche Beschreibung des Projekes:
      • Details zur Funktion und technischen Prinzipien
      • Details zum Konstruktions- und Herstellungsprozess
    • Problembehandlung: Wo klemmts gerade, was hindert besonders?
    • Entwurf, Planung, Design
    • Entwicklung und Konstruktion
    • Prototyp testen, Meßdaten, Optimierung
    • Bill of Materials
    • Dokumentation
    • Release-Versionen, Erweiterungen
    • Verbreitung, User-Gallerie

Spenden

Spenden
oder mit Bitcoins:
Bitcoin accept round button 168x64.png

Kontakt

Literatur und Links

Referenz Beschreibung
[1] Wikipedia zum Thema LiFePO4-Akkus
opensource-solar.org Präsentation zu OpenHardware Solar-Charger für LiFePO4-Akkus

Presse