Solarspeicher (stationär): Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
Zeile 15: Zeile 15:
 
Der hier dokumentierte Aufbau des Solarspeichers basiert auf Open-Source Hard- und Software und unterliegt der GNU General Public License v3.0.  
 
Der hier dokumentierte Aufbau des Solarspeichers basiert auf Open-Source Hard- und Software und unterliegt der GNU General Public License v3.0.  
 
Hinter Soldorado Open Solar Systems stehen wir freien Entwickler Thomas Plaz und Frank Richter. Sämtliche Verbesserungen und Weiterentwicklungen sind von uns Entwicklern ausdrücklich erwünscht, um eine schnelle Verbreitung zu ermöglichen und die Energiewende zu unterstützen. Alle Quelldaten werden mittelfristig bei GitHub verfügbar sein. Sofort verfügbar sind die Dateien momentan unter der entsprechenden Verlinkung auf dieser Seite.<br>
 
Hinter Soldorado Open Solar Systems stehen wir freien Entwickler Thomas Plaz und Frank Richter. Sämtliche Verbesserungen und Weiterentwicklungen sind von uns Entwicklern ausdrücklich erwünscht, um eine schnelle Verbreitung zu ermöglichen und die Energiewende zu unterstützen. Alle Quelldaten werden mittelfristig bei GitHub verfügbar sein. Sofort verfügbar sind die Dateien momentan unter der entsprechenden Verlinkung auf dieser Seite.<br>
 +
 +
==Projektbeschreibung==
 +
===Motivation===
 +
Am Anfang dieses Projektes stand der Wille, endlich aktiv etwas für die eigene Umweltbilanz direkt Zuhause zu tun. Wir leben in Miete in einem kleinen Häuschen mit sehr beschränkter Dachfläche mit verschachteltem Dach in Ost und Westrichtung (max. 4 Solarmodule, insgesamt 1 kWP). Unser Jahresstromverbrauch liegt für die mittlerweile vierköpfige Familie bei etwa 1700 kWh/a. Unsere  Wärmeerzeugung erfolgt (aufgrund der Mietverhältnisse) nach wie vor konventionell mit Öl.<br>
 +
Eine normale PV Einspeiseanlage kam für uns mit lediglich vier Modulen aufgrund des Mietverhältnisses und dem bürokratischen Aufwandes nicht in Frage. Wir wollten so viel Energie wie möglich selbst erzeugen und direkt verbrauchen. Laut Internetrecherche im Jahr 2015 waren aber kaum finanzierbare Systeme zu finden, die unseren Anforderungen genügten. Am Ende haben wir es mit dem 4 Panel Controller von Solarelectrix kombiniert mit zwei geschlossenzelligen 75Ah Bleiakkumulatoren (35Ah effektive Batteriekapazität) versucht. Ansatz war hier die Verwendung eines leistungsgeregelten Miniwechselrichters für die Grundlastdeckung im Haus. Die Auslegung des Speichers und des Wechselrichters erfolgte durch die Ermittlung eines wirtschaftlichen Optimums zwischen Eigenverbrauch, maximal zu erwartenden Energieertrag der zur Verfügung stehenden Dachfläche, Batteriegröße und Amortisationszeit. Die Amortisationszeit wurde mit ca. 13 Jahren berechnet. Die jährliche Co2 Einsparung liegt bei ca. 40 kg/a.
 +
Überschussstrom wird in der Batterie gespeichert, kein Strom sollte ins Netz zurück fließen. In den folgenden Monaten konnten wir mithilfe des open source Systemmonitorings „Volkszähler“  das Verhalten der Anlage genau studieren und optimieren. Nach und nach ersetzten wir alle Funktionen des 4 Panel Controllers durch eigene Regelalgorithmen mithilfe des Arduinoboards und erreichten deutlich höhere Leistungsumsätze des Systems sowie eine zuverlässige Batterieschutzfunktion. Unseren "fliegenden" Aufbau montierten wir 2017 in einen Schaltschrank. 2018 ersetzten wir die Bleiakkumulatoren durch ein Batteriemanagementsystems (BMS) und einen 60 AH Lithiumakkumulator. Immer mehr Funktionen wie z.B. eine Heizstabregelung zum Verbrauch des überschüssigen Stromes an sonnenreichen Sommertagen zur Trinkwarmwassererwärmung, eine schaltbare Steckdose zum Laden des E-Bike Akkumulators, VPN Zugang via App oder Browser auf alle Systemdaten von überall auf der Welt, Schalter für die Volleinspeisung des Wechselrichters und eine detaillierte Simulation des Gesamtsystems kamen nach und nach hinzu. Inzwischen deckt die Solaranlage im Jahresschnitt ca. 35% des Jahresstromverbrauches, trotz morgendlicher Verschattung und suboptimaler Solarmodulausrichtung.
 +
Da wir in vielen Fällen auf die Produkte der Open Source Community zurückgegriffen haben, ist es uns nun ein Vergnügen eine ausführliche Dokumentation unserer Entwicklung zu schreiben und unser Wissen öffentlich allen zur Verfügung zu stellen. Alle Bastler und Entwickler sind eingeladen mit uns ins Gespräch zu kommen und die Soft- und Hardware weiterzuentwickeln oder zu modifizieren. Wir hoffen damit viele begeistern zu können entweder selbst einen Solarspeicher zu bauen oder sich einen bauen zu lassen. Es gibt noch viele Dachflächen, die bisher aufgrund ihrer kleinen Fläche als unrentabel abgetan wurden, die mit diesem System nun auch effektiv und wirtschaftlich erschlossen werden können. Wir hoffen damit einen kleinen Teil zur konkreten Umsetzung der Energiewende und zur Vergrößerung der eigenen Unabhängigkeit beitragen zu können.

Version vom 12. November 2019, 19:30 Uhr

In Arbeit.png

Wiki in Arbeit....[1]

Kurzbeschreibung

Das vorliegende Open Source Projekt „Soldorado Solarspeicher“ von OPEN SOLAR SYSTEMS basiert auf der Idee unabhängig von teuren kommerziellen Solarspeicherprodukten sowie unabhängig von der EEG Vergütung einen professionellen, kostengünstigen und intelligenten Solarspeicher zu entwickeln, der es ermöglicht auch bei PV Anlagen auf kleineren Dach- oder Balkonflächen den Grundlaststrom in einem Haushalt regenerativ abzudecken. Schon mit 4 Solarmodulen (ca. 1 kWP) und einer Speichergröße von 1,8 kW können ca. 35 % des eigenen Stromjahresverbrauches durch Eigenerzeugung selbst gedeckt werden.
Die Investitionskosten liegen weit unter den kommerziell angebotenen Produkten. Somit besteht auch für Menschen mit wenig zur Verfügung stehender Fläche die Möglichkeit aktiv etwas für die Umwelt und langfristig etwas für den eigenen Geldbeutel und die eigene Unabhängigkeit zu tun.

Da im ersten möglichen Fall keine Einspeisung ins öffentliche Stromnetz erfolgt, wird der nicht benötigte Strom im Akkumulator zwischengespeichert und nach Erreichen der vollen Akkumulatorkapazität zur Brauchwassererwärmung genutzt.
Im zweiten möglichen Fall erfolgt die Beladung des Akkumulators und die Einspeisung ins Netz parallel (Rücklaufsperre bzw. Zweirichtungszähler vom Netzbetreiber notwendig).
Um die optimale Speicher- und PV Anlagengröße in Bezug auf die Wirtschaftlichkeit und Amortisation des Gesamtsystems zu ermitteln, wird zuerst eine detaillierte, stündlich aufgelöste Jahressystemsimulation in Abhängigkeit des Stromlastprofiles des jeweiligen Haushaltes durchgeführt.
Zur optimalen Auslegung steht ein umfangreiches Exceltool zur Verfügung. Zur Erhöhung des elektrischen Eigenverbrauchs können Funksteckdosen von der intelligenten Regelung gezielt angesteuert werden, um in Zeiten hoher Solareinstrahlung elektrische Verbraucher wie E-Bikeladung, Wasch- oder Geschirrspülmaschinen zu aktivieren.
Die Onlinevisualisierung erfolgt auf zwei Weboberflächen. Für die detaillierte Datenauswertung des Gesamtsystems erfolgt dies über das Web Frontend des „Volkszählers“. Um einen schnellen Überblick über aktuelle Verbrauchsdaten, Wetteraussichten, Speicherladung, Speicherstatus und eingesparte CO2 Summe zu erhalten, erfolgt dies über das Dashboard von Node-red, einer Plattform zur Integration und Programmierung von Akteuren des sogenannten Internet of things (Internet der Dinge).
Die offenen und hier dokumentierten Schnittstellen über Arduino, Raspberry bzw. Volkszähler bieten Entwickler darüber hinaus die Möglichkeit den Programmiercode weiter zu verfeinern und bspw. die Onlinevisualisierung ihren Bedürfnissen individuell anzupassen oder weitere intelligente Verbraucher anzusteuern.
Der hier dokumentierte Aufbau des Solarspeichers basiert auf Open-Source Hard- und Software und unterliegt der GNU General Public License v3.0. Hinter Soldorado Open Solar Systems stehen wir freien Entwickler Thomas Plaz und Frank Richter. Sämtliche Verbesserungen und Weiterentwicklungen sind von uns Entwicklern ausdrücklich erwünscht, um eine schnelle Verbreitung zu ermöglichen und die Energiewende zu unterstützen. Alle Quelldaten werden mittelfristig bei GitHub verfügbar sein. Sofort verfügbar sind die Dateien momentan unter der entsprechenden Verlinkung auf dieser Seite.

Projektbeschreibung

Motivation

Am Anfang dieses Projektes stand der Wille, endlich aktiv etwas für die eigene Umweltbilanz direkt Zuhause zu tun. Wir leben in Miete in einem kleinen Häuschen mit sehr beschränkter Dachfläche mit verschachteltem Dach in Ost und Westrichtung (max. 4 Solarmodule, insgesamt 1 kWP). Unser Jahresstromverbrauch liegt für die mittlerweile vierköpfige Familie bei etwa 1700 kWh/a. Unsere Wärmeerzeugung erfolgt (aufgrund der Mietverhältnisse) nach wie vor konventionell mit Öl.
Eine normale PV Einspeiseanlage kam für uns mit lediglich vier Modulen aufgrund des Mietverhältnisses und dem bürokratischen Aufwandes nicht in Frage. Wir wollten so viel Energie wie möglich selbst erzeugen und direkt verbrauchen. Laut Internetrecherche im Jahr 2015 waren aber kaum finanzierbare Systeme zu finden, die unseren Anforderungen genügten. Am Ende haben wir es mit dem 4 Panel Controller von Solarelectrix kombiniert mit zwei geschlossenzelligen 75Ah Bleiakkumulatoren (35Ah effektive Batteriekapazität) versucht. Ansatz war hier die Verwendung eines leistungsgeregelten Miniwechselrichters für die Grundlastdeckung im Haus. Die Auslegung des Speichers und des Wechselrichters erfolgte durch die Ermittlung eines wirtschaftlichen Optimums zwischen Eigenverbrauch, maximal zu erwartenden Energieertrag der zur Verfügung stehenden Dachfläche, Batteriegröße und Amortisationszeit. Die Amortisationszeit wurde mit ca. 13 Jahren berechnet. Die jährliche Co2 Einsparung liegt bei ca. 40 kg/a. Überschussstrom wird in der Batterie gespeichert, kein Strom sollte ins Netz zurück fließen. In den folgenden Monaten konnten wir mithilfe des open source Systemmonitorings „Volkszähler“ das Verhalten der Anlage genau studieren und optimieren. Nach und nach ersetzten wir alle Funktionen des 4 Panel Controllers durch eigene Regelalgorithmen mithilfe des Arduinoboards und erreichten deutlich höhere Leistungsumsätze des Systems sowie eine zuverlässige Batterieschutzfunktion. Unseren "fliegenden" Aufbau montierten wir 2017 in einen Schaltschrank. 2018 ersetzten wir die Bleiakkumulatoren durch ein Batteriemanagementsystems (BMS) und einen 60 AH Lithiumakkumulator. Immer mehr Funktionen wie z.B. eine Heizstabregelung zum Verbrauch des überschüssigen Stromes an sonnenreichen Sommertagen zur Trinkwarmwassererwärmung, eine schaltbare Steckdose zum Laden des E-Bike Akkumulators, VPN Zugang via App oder Browser auf alle Systemdaten von überall auf der Welt, Schalter für die Volleinspeisung des Wechselrichters und eine detaillierte Simulation des Gesamtsystems kamen nach und nach hinzu. Inzwischen deckt die Solaranlage im Jahresschnitt ca. 35% des Jahresstromverbrauches, trotz morgendlicher Verschattung und suboptimaler Solarmodulausrichtung. Da wir in vielen Fällen auf die Produkte der Open Source Community zurückgegriffen haben, ist es uns nun ein Vergnügen eine ausführliche Dokumentation unserer Entwicklung zu schreiben und unser Wissen öffentlich allen zur Verfügung zu stellen. Alle Bastler und Entwickler sind eingeladen mit uns ins Gespräch zu kommen und die Soft- und Hardware weiterzuentwickeln oder zu modifizieren. Wir hoffen damit viele begeistern zu können entweder selbst einen Solarspeicher zu bauen oder sich einen bauen zu lassen. Es gibt noch viele Dachflächen, die bisher aufgrund ihrer kleinen Fläche als unrentabel abgetan wurden, die mit diesem System nun auch effektiv und wirtschaftlich erschlossen werden können. Wir hoffen damit einen kleinen Teil zur konkreten Umsetzung der Energiewende und zur Vergrößerung der eigenen Unabhängigkeit beitragen zu können.

  1. Linktext, Wiki in Arbeit....