Boxfarm: Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
(Text enorm ergänzt, bzw. aktualisiert auf den Stand der Konstruktionsversion 1.1)
Zeile 4: Zeile 4:
  
 
[[File:Boxfarm_prototype_1.1_thumb.jpg|thumb|300px|right|Ein einzelnes gering dimensioniertes Modul der Version 1.1, voll ausgestattet. Beliebig in der Größe Skalierbar]]
 
[[File:Boxfarm_prototype_1.1_thumb.jpg|thumb|300px|right|Ein einzelnes gering dimensioniertes Modul der Version 1.1, voll ausgestattet. Beliebig in der Größe Skalierbar]]
 +
  
  

Version vom 17. Februar 2016, 02:30 Uhr

Eine transportable Mini-Hydroponikfarm - prinzipiell autark und beliebig in der Größe skalierbar

Project-icon boxfarm rgb wikithumb.png
Ein einzelnes gering dimensioniertes Modul der Version 1.1, voll ausgestattet. Beliebig in der Größe Skalierbar








Das Modul entstand für eine Demo lösungsorienteriter Konzepte der Selbstorganisation und Deglobalisierung in Stuttgart als Aufsatz für den Frachtbereich eines Lastenrads von XYZ-Cargo. Es steckte da quasi drin, soll natürlich uns sollte abnehmbar sein. Das Gerüst in dieser Variante ist mechanisch kompatibel mit der XYZ-Node-Bautechnik der hamburger Entwickler der xyz-Lastenräder. Nun dient es als Prototyp einer beliebig vergrößerbaren NFT Anlage, die nun weiter verbessert wird.


Überblick

Wichtigste Eigenschaften

Unsere eigenen Anfangsgedanken waren:

  • Upcyclinggedanke: Einige Teile flossen in die flexible Konstruktion ein, weil sie zufällig verfügbar waren und leicht angepasst wurden
    • Aluprofile im Keller
    • Schläuche für die Pumpe passend, mit als Adapter zweckentfremdeten Gegenständen verbunden
    • Ein Eimer mit Verschlussdeckel ('Obi-Eimer') als Wassertank
  • maximum adaptability
    • sehr hohe upgradefreudigkeit (Upcycling vs. Industrielevel) und in großen Dimensionen ermöglichen, ohne von den Bauplänen abzuweichen.
    • Leichte Ab- und Anmontierbarkeit der Energiequelle/Elektronik/Pumpen/Nährstofftanks
  • trotzdem hohes Produktniveu: es gibt simplere Konstruktionene im Internet, die einfacher zu bauen sind, allerdings meist nur für ihre momentane Größe konzipiert, sowie schlechter erweiterbar, wenn nicht von vorn herein an Upgrades gedacht wird
  • stufenlose Skalierbarkeit
    • Vertikal: längere vertikale Profile hinten = steilerer Hang = längere schräge Profile, auf denen die Kanäle montiert = mehr Kanäle auf kleiner Fläche
    • Horizontal: einfach längere Rohre auf geklonte Alurahmen montieren, sodass ein vollausgestatteter Rahmen eine größere Beetgröße verwalten kann. Die Klone müssen das selbe Format haben, können mit größerem Abstand aufgestellt werden (spart Material) und nur einer muss mit Betriebstechnik und Tank versehen werden. Die Rahmen können auch tiefer sein, d.h. ebenfalls mehr Kanäle.


Ein Kompromisslastiges Design, erhöht m.E. aber die Anpassbarkeit...


Die Alukonstruktion aus eloxierten Quadrahtrohrprofilen ist recyclebar, wetterfest und durch das o.g. XYZ Nodes System sehr stabil. Die HT Rohre bekommt man überall und die Tankdurchführungen mit Schlauchtüllen (ursprüngliche Idee in der Brainstorming Phase und für 1.2 geplant) bekommt mab aus dem Bootsbau. Die Schläuche dafür in jedem Baumarkt oder Zoohandlung. Die PE Rohre mit den Klemmverbindern sind hochwertig allerdings etwas 'over-engineered'. Man kann für v1.2+ statt Winkel auch gerade Klemmverbinder verwenden, und mit flexiblen Schläuchen direkt in Löcher in die Oberseite der unteren kanäle rein - spart im Vergleich zu v1.1 Streng modular ist es nicht: hinderlich und erhöht den Materialbedarf

* Nachteil beim XYZ Node System: Es muss abgewandelt werden, wenn die Bioxfarm 'vollwertig' Open Source werden soll. Der Entwicker n55 hat dieses Designeingeschränkt lizensiert. Kommerzielle Nutzung (Verkauf von Bausätzen u.a.) ist der OSE Germany nicht erlaubt. Also in dieser Variante keine 'vollwertig' Freie Hardware.


Jedes Modul kann, wenn es so gebaut ist, voll ausgestattet autark und 'intelligent' sein. Es wäre anderweitig aber Ressourcenverschwendung, wenn jedes dann seine eigene Betribebstechnik hat. Mit einer Pumpe, einem 5 l oder 10 l Wassertank, einem Controller einem Satz Sensoren und einer Dantenschnittstelle in einem Hauptgerüst zB könnte man kleine und große Module, oder mehrere 'Klone' eines Rahmens mit sehr langen Rohrekanälen intelligent machen. Wie die Größe des Kreislaufs sich allerdings auf die erforderliche Leistung der Pumpe auswirkt, wird sich zeigen. Hauptsache von der Konstruktion muss so wenig wie möglich mitmultipliziert werden. Ein zB 10 l Eimer eines 1m Moduls kann prinzipiell auch für größere Kreisläufe (2 - 10m) eingesetzt werden, solange in diesem kleinen Tank immer genug Wasser steht. Regulation der Pumpe ist wichtig!


Als Tank normale Wasserkanister - oder ein Cluster aus upcycleten PET-Flaschen. Letzteres ist vielleicht zu abenteuerlich und evtl. anfälliger fur undichte Stellen. Und eher die low-budget-recylce-diy variante. Kann man auch mal probieren, Da könnte man ja ein pet modul bauen was ebenfals kompatibel mit der Kanistervariante ist (Der Wasserspeicher also selbst ein Modul, ähnlich wie der OSE-Powercube)


Autarkie

Der Rahmen lässt Raum für ordentliche Integration einer 12 V Batterie und eines Photovoltaikpanels (ca. 20 W). Daher war angedacht, nur Geräte mit nicht mehr als 12V Eingangsspannung zu verwenden. WLAN für die Steuertechnik erleichtert das Überwachen


Autonomie

Teilautomatisiert werden sollte sie durch elekrtonische Steuereung der Dosierung und der Werteüberwachung:

  • Arduinobasiert
  • TEMP-, PH- und EC-Sonden mit Schnittstellen
  • Dosierungsautomatik durch Ventile
    • 'Guerillavariante' mit Servos, die Schläuche knicken und lösen: Servos sind billiger und können bei Demontage komplett andere Zwecke erfüllen
    • professioneller & teurer: Magnetventile (Solenoids), auch kleine müssen mit 12V angesteuert werden
  • eine Platine mit Schraubklemmen und Pins für Stecker, damit muss das meiste nicht drirekt an den Arduino angeschlossen werden


Fernwartung: Personelle Ressourcen ermöglichen den Gedanken an eine Fernüberwachung mittels Ethernet/WLAN-Modul und einer App als Front End. Bspw. eine Android-App, die die Oberfläche bereitstellt, damit spart man sich auch ein Display am device selbst, Die App könnte dann auch Statistken aufbereiten: wie oft wurde gedüngt, wie entwickelt sich der PH Wert, wieviel von den Regulatoren wurde verwendet (Ventilöffnungszeiten und -dauer).


Mögliche Pflanzen

  • Erdbeeren
  • Salate
  • Buschbohnen
  • ...?

Konstruktion

Rahmen

  • Aluprofile: 20 mm Quadratrohre, 1,5mm Stärke
  • konstruiert nach dem Prinzip des XYZ-Node-Systems von N55 (CC-BY-NC-SA)
  • Prinzipiell ist eine Neukonstruktion des Rahmens, basierend auf dem UniPro-kit möglich
  • verstellbare Stempel an den Füßen, um bei Unebenheiten stabil zu stehen.
  • Eine Querstrebe ermöglicht das befestigungslose Einhängen eines 10L Kunststoffeimers als
  • zwischen den Beinen kann prinzipell ein Fischtank platziert werden, bzw. muss der Rahmen dann passend groß sein, um platzsparend über einem fischfreundlichen Tank stehen zu können.


Pflanzreihenkanäle

  • graue HT Rohre (trinkwassergeeignet)
  • erhältliche Durchmesser: 90, 110, 125 oder 160 mm
  • HT Rohrstopfen präpariert mit Tankdurchführungen
  • runde Löcher sägen für Töpfe
  • v1.2+ Verbesserung: eckige Löcher vorzeichnen und mit einem Heißschneidegerät herausschmelzen


Leitungen und Verbindungen

  • HT Rohrstopfen präparieren mit Tankdurchführungen
  • PE Rohr Klemmverbinder (Übergangswinkel, 1/2" Innengewinde) - professionell, aber teuer und klobig)
  • diverse Adapterimprovisationen für den Anschluss der Pumpe und um verfügbare Schlauchabfälle zu verwenden (Upcycling)
  • v1.2+ Verbesserung: Borddurchlässe, 1/2" Außengewinde & 15mm mit Schlauchtüllen und entsprechende Aquaristikschläuche


Pflanzenbereich

  • Gitternetztöpfe rund
  • Durchmesser 55, 80 oder 100 mm?
  • v1.2+ Verbesserung: wenn eckige Löcher entsprechend groß, keine Töpfe sondern Rohre mit Blähton füllen


Versorgung

  • Luft- (Air Stone) und Wasserpumpen
  • 12V Netzteil (v1.1)
  • kl. Tank, gefüllt mit konzentrierterer Düngerlösung zur Dosierung/Anreicherung, sobald in der Lösung Nährstoffmangel entsteht
  • kl. Tank, gefüllt mit pH Regulator Flüssigkeit zur Dosierung/Anreicherung, sobald die Sensormessung ergibt, dass Bedarf besteht
  • v1.2+ optional: 12V Akku mit PV Panel möglicherweise eine kleine Version der SolarBox


Betriebstechnik - (Brainbox v1.0)