Datenseite für den Literatureintrag „IGEM-Team Bielefeld, MFC 2013“ (Verwendung, Zitieren, Literaturverzeichnis u.v.a.m. siehe am unteren Seitenrand im aufklappbaren „Werkzeugkasten für Verfasser“)

IGEM-Team Bielefeld, MFC 2013: Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
(+archived version)
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 3: Zeile 3:
 
|Jahr=2013
 
|Jahr=2013
 
|Titel=Microbial Fuel Cell
 
|Titel=Microbial Fuel Cell
|Stichworte=microbial fuel cell; bioelectricity; DIY; power generation; Geobacter sulfurreducens; Escherichia coli; fuel cell; 3D printing;
+
|Stichworte=microbial fuel cell; bioelectricity; DIY; power generation; Geobacter sulfurreducens; Escherichia coli; fuel cell; 3D printing; english;
 
|Ort=Bielefeld
 
|Ort=Bielefeld
 +
|Deutsche Übersetzung=Mikrobielle Ladezelle
 
|Originalsprache=en
 
|Originalsprache=en
 
|Zusammenfassung='''Overview:''' A microbial fuel cell (MFC) is utilized for power generation through the conversion of organic and inorganic substrates by microorganisms. A fuel cell generally consists of two units, the anode and cathode compartment. These are separated by a proton exchange membrane (PEM). The microorganisms, acting as biocatalysts, release electrons during metabolic reactions and transfer them to the anode of the fuel cell. The protons being freed up during this process are transferred to the cathode compartment through the PEM. The electrons pass through an external load circuit to the cathode. In the cathode chamber, these electrons and protons reduce an electron acceptor. Thus, an electric current is generated. The most important property of such a system is the bacteria's ability to transfer electrons to the anode. There are lots of other aspects to consider though, all of which are vital for the successful operation of a fuel cell.<br>
 
|Zusammenfassung='''Overview:''' A microbial fuel cell (MFC) is utilized for power generation through the conversion of organic and inorganic substrates by microorganisms. A fuel cell generally consists of two units, the anode and cathode compartment. These are separated by a proton exchange membrane (PEM). The microorganisms, acting as biocatalysts, release electrons during metabolic reactions and transfer them to the anode of the fuel cell. The protons being freed up during this process are transferred to the cathode compartment through the PEM. The electrons pass through an external load circuit to the cathode. In the cathode chamber, these electrons and protons reduce an electron acceptor. Thus, an electric current is generated. The most important property of such a system is the bacteria's ability to transfer electrons to the anode. There are lots of other aspects to consider though, all of which are vital for the successful operation of a fuel cell.<br>

Aktuelle Version vom 13. Mai 2020, 16:18 Uhr

Rositzka, L., Grenz, S., Tubessing, T., Schüler, M., Ruwe, M., Meyer, T., Bleckwehl, T., Thomas, F., Korszanska, A. & Romanova, N. 2013: Microbial Fuel Cell. Bielefeld (archived version see file: Team Bielefeld-Germany Project MFC - 2013.igem.org-html.zip; – http:/​/​2013.​igem.​org/​wiki/​index.​php?title=​Team:Bielefeld-Germany/​Project/​MFC&oldid=​360411, abgerufen am 27. Juni 2018). (Übersetzung: Mikrobielle Ladezelle)


Zusammenfassung: Overview: A microbial fuel cell (MFC) is utilized for power generation through the conversion of organic and inorganic substrates by microorganisms. A fuel cell generally consists of two units, the anode and cathode compartment. These are separated by a proton exchange membrane (PEM). The microorganisms, acting as biocatalysts, release electrons during metabolic reactions and transfer them to the anode of the fuel cell. The protons being freed up during this process are transferred to the cathode compartment through the PEM. The electrons pass through an external load circuit to the cathode. In the cathode chamber, these electrons and protons reduce an electron acceptor. Thus, an electric current is generated. The most important property of such a system is the bacteria's ability to transfer electrons to the anode. There are lots of other aspects to consider though, all of which are vital for the successful operation of a fuel cell.

Most existing projects rely on using mixed cultures of different types of bacteria in the anode compartment. However, in most cases these systems are not very well characterized. Often it is not even known which species are part of these cultures. This makes it almost impossible to improve the system by directed genetic engineering. Applying such a black box system outside of a laboratory might also pose safety risks, since it may contain pathogenic cultures. Another disadvantage is that some of the species might be quite sensitive to different kinds of stress. Geobacter sulfurreducens for example is often found in such cultures and very susceptible to oxidative stress.

For these reasons, Bielefelds 2013 iGEM Team decided to develop a system which only relies on Escherichia coli for power generation. The main benefit being that these bacteria grow fast and are quite robust regarding cultivation conditions. Another advantage over a mixed culture is that the potential risks of using such a single-strain culture are much more easily assessed and can be reduced by systematic manipulation of the bacterial genome.




Werkzeugkasten für Verfasser

Diese Seite ist ein Literatureintrag Hier kannst man …

Ein {{Zitat | IGEM-Team Bielefeld, MFC 2013}} erzeugt einen Zitate-Link zu diesem Literatureintrag diese Seite hier. Wenn man zusätzlich ein Literaturverzeichnis automatisch aus allen mit {{Zitat|…}} verwendeten Literaturreferenzen erstellen lassen will, fügt man {{Literaturverzeichnis}} an die entsprechende Stelle, was dann ein alphabetisch sortiertes Literaturverzeichnis erstellt. Tip: Der WikiEditor bietet über das Toolbar insert reference text.png-Bildchen einen einfaches Einfügewerkzeug für ein Zitat an.

KopierenEinfügen Kopiervorlagen und Beispiele zum Zitieren auf anderen Seiten:

  1. IGEM-Team Bielefeld, MFC 2013 ← {{Zitat | IGEM-Team Bielefeld, MFC 2013}}
  2. IGEM-Team Bielefeld, MFC (2013) ← {{Zitat | IGEM-Team Bielefeld, MFC (2013)}}
    Dazugehörige Literaturseite darf keine Jahreszahl-Klammern haben, nur z.B. „Autor et al. 1995“
  3. IGEM-Team Bielefeld, MFC (2013, S. 24) ← {{Zitat | IGEM-Team Bielefeld, MFC 2013 |IGEM-Team Bielefeld, MFC (2013, S. 24)}}
    IGEM-Team Bielefeld, MFC 2013: 24 ← {{Zitat | IGEM-Team Bielefeld, MFC 2013 |IGEM-Team Bielefeld, MFC 2013: 24}}
  4. IGEM-Team Bielefeld, MFC (2013, Microbial Fuel Cell) ← {{Zitat | IGEM-Team Bielefeld, MFC 2013 |IGEM-Team Bielefeld, MFC (2013, Microbial Fuel Cell)}}
  5. IGEM-Team Bielefeld, MFC (2013)[1] kurzer (lokaler) Seitenkommentar → {{Zitat | IGEM-Team Bielefeld, MFC (2013)| Kommentar = abgerufen am 21. November 2024 }}
    Hinweis: hierbei muss eine Seite möglicherweise 2 × gespeichert werden, weil manche semantische Daten erst nach dem 2. Mal von der Vorlage auswertbar sind.
  6. verstecktes Zitat ← {{Zitat versteckt | IGEM-Team Bielefeld, MFC (2013)}}
    erscheint aber im Literaturverzeichnis (auch mit lokalem Kommentar möglich)
  7. Kapitälchen können mit {{ZITATFORMAT Kapitälchen}} für die Seite angeschaltet werden.
  8. {{Literaturdaten | IGEM-Team Bielefeld, MFC 2013}} → nur diesen Literatureintrag manuell einbinden. Die Vorlage {{Literaturverzeichnis}} erzeugt Einträge automatisch.
Literatureintrag:

(Oder anderen Seitenname eingeben)