Mathtest: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Admin (Diskussion | Beiträge) |
K (Hilfe:Kategorisieren von Seiten: Kategorie: Wiki entfernt; Kategorie: Wiki/en hinzugefügt mittels HotCat-Helferlein (s. Benutzereinstellungen)) |
||
(5 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | < | + | <!-- some LaTeX macros we want to use: --> |
+ | $ | ||
+ | \newcommand{\Re}{\mathrm{Re}\,} | ||
+ | \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} | ||
+ | $ | ||
+ | |||
+ | We consider, for various values of $s$, the $n$-dimensional integral | ||
+ | \begin{align} | ||
+ | \label{def:Wns} | ||
+ | W_n (s) | ||
+ | &:= | ||
+ | \int_{[0, 1]^n} | ||
+ | \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} | ||
+ | \end{align} | ||
+ | which occurs in the theory of uniform random walk integrals in the plane, | ||
+ | where at each step a unit-step is taken in a random direction. As such, | ||
+ | the integral \eqref{def:Wns} expresses the $s$-th moment of the distance | ||
+ | to the origin after $n$ steps. | ||
+ | |||
+ | By experimentation and some sketchy arguments we quickly conjectured and | ||
+ | strongly believed that, for $k$ a nonnegative integer | ||
+ | \begin{align} | ||
+ | \label{eq:W3k} | ||
+ | W_3(k) &= \Re \, \pFq32{ \\ \frac12, -\frac k2, -\frac k2}{1, 1}{4}. | ||
+ | \end{align} | ||
+ | Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. | ||
+ | The reason for \eqref{eq:W3k} was long a mystery, but it will be explained | ||
+ | at the end of the paper. | ||
+ | |||
+ | [[Category:Wiki/en]] |
Aktuelle Version vom 28. Juni 2018, 22:32 Uhr
$
\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align}
\label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}
\label{eq:W3k} W_3(k) &= \Re \, \pFq32{ \\ \frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.