Mathtest: Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „ ===Integral Equation=== <math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^…“)
 
K (Hilfe:Kategorisieren von Seiten: Kategorie: Wiki entfernt; Kategorie: Wiki/en hinzugefügt mittels HotCat-Helferlein (s. Benutzereinstellungen))
 
(7 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
<!-- some LaTeX macros we want to use: -->
 +
$
 +
  \newcommand{\Re}{\mathrm{Re}\,}
 +
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
 +
$
 +
 +
We consider, for various values of $s$, the $n$-dimensional integral
 +
\begin{align}
 +
  \label{def:Wns}
 +
  W_n (s)
 +
  &:=
 +
  \int_{[0, 1]^n}
 +
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 +
\end{align}
 +
which occurs in the theory of uniform random walk integrals in the plane,
 +
where at each step a unit-step is taken in a random direction.  As such,
 +
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
 +
to the origin after $n$ steps.
 +
 +
By experimentation and some sketchy arguments we quickly conjectured and
 +
strongly believed that, for $k$ a nonnegative integer
 +
\begin{align}
 +
  \label{eq:W3k}
 +
  W_3(k) &= \Re \, \pFq32{ \\ \frac12, -\frac k2, -\frac k2}{1, 1}{4}.
 +
\end{align}
 +
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
 +
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
 +
at the end of the paper.
  
===Integral Equation===
+
[[Category:Wiki/en]]
<math>\phi_n(\kappa)
 
= \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R}  \frac{\partial}{\partial R}  \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
 

Aktuelle Version vom 28. Juni 2018, 22:32 Uhr

$

 \newcommand{\Re}{\mathrm{Re}\,}
 \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}

$

We consider, for various values of $s$, the $n$-dimensional integral \begin{align}

 \label{def:Wns}
 W_n (s)
 &:= 
 \int_{[0, 1]^n} 
   \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}

\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}

 \label{eq:W3k}
 W_3(k) &= \Re \, \pFq32{ \\ \frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.