Milker: Unterschied zwischen den Versionen

Aus Open Source Ecology - Germany
Zur Navigation springen Zur Suche springen
K (added forum link as there the development progress is documented and discussion is welcome.)
K (Update and Forum link.)
Zeile 1: Zeile 1:
[https://forum.opensourceecology.de/viewtopic.php?f=28&t=566&p=2807#p2807| --> Updates & News]
+
[https://forum.opensourceecology.de/viewtopic.php?f=28&t=566&p=2807#p2807| --> Updates & News [Forum]]
  
 
==Motivation for an autonomous milking ongoing robot (AMOR)==
 
==Motivation for an autonomous milking ongoing robot (AMOR)==
An autonomous system results in the following dis-/advantages:
+
[[An autonomous system results in the following dis-/advantages:]]
 
* + Indepence (no more need to be there to milk morning and evening, 7days/week)
 
* + Indepence (no more need to be there to milk morning and evening, 7days/week)
 
* - Machine service increases
 
* - Machine service increases
Zeile 16: Zeile 16:
  
  
An ongoing system results in the following (dis-)advantages:
+
[[An ongoing system results in the following (dis-)advantages:]]
 
* - Higher complexity.
 
* - Higher complexity.
 
* + Independance of any external supplies.
 
* + Independance of any external supplies.
Zeile 34: Zeile 34:
  
 
==Separation in Subproblems & Technological Difficulties ==
 
==Separation in Subproblems & Technological Difficulties ==
Our AMOR consists of several submodules:
+
[[Our AMOR consists of several submodules:]]
 
* MECHANICAL CONSTRUCTION
 
* MECHANICAL CONSTRUCTION
 
** - Difficult to be robust, lightweight (for truck to lift) & cheap the same time.
 
** - Difficult to be robust, lightweight (for truck to lift) & cheap the same time.
Zeile 64: Zeile 64:
  
  
==Revisions & Power system==
+
==Power system==
Power system 100 kW inverter is planned for late August or early September, the AMOR power system & basic prototype for Autumn.
+
Several ideas for autonomous power can be found in the forum. The easiest solution for now will be to attach a truck or emergency generator (UPS) or simply an extension cord. So we need a possibility to plug it into the grid (1-phase might be too low, but let's go for that first as the vacuum system needs by far less energy in a mobile robot than in a conventional one).
 +
For regenerative purposes a 100 kW inverter is planned and is waiting to be tested (once I have the equipment). The last autumn prototype was a failure in too many aspects (rigidity, linear gliders of robotic manipulators) so that design was adapted in the meantime and is waiting for me finishing several blender addons.
 
[http://howto.dragontale.de/?id=blog&blogcat=dIY_u_engineering_u_science#Wasserkraft_-_DC-AC-Inverter_100kW_High-Level]
 
[http://howto.dragontale.de/?id=blog&blogcat=dIY_u_engineering_u_science#Wasserkraft_-_DC-AC-Inverter_100kW_High-Level]
  
 
==Discussion==
 
==Discussion==
  
'''Feel free to post critiques or technical stuff here - alternatively use the forum, even though currently I think it's easier to discuss here directly - or under tab "talk".''' --Jan
+
'''Feel free to post critiques or technical stuff here - alternatively use the forum or under tab "talk".''' --Jan
  
 
*Topic
 
*Topic

Version vom 4. Februar 2014, 03:37 Uhr

--> Updates & News [Forum]

Motivation for an autonomous milking ongoing robot (AMOR)

An autonomous system results in the following dis-/advantages:

  • + Indepence (no more need to be there to milk morning and evening, 7days/week)
  • - Machine service increases
  • + Technical knowledge increases, hence perhaps some other good robot ideas may evolve.
  • + Cows/Goats/Sheep can decide themselves when to get milked.
  • + Concentrated feed can be delivered automatically and according to milk delivered.
  • - Animals' possible illness not realized early enough. => Action taken too late. => Animal could die.
  • - Gathering at Milking robot leaves behind a lot of unusable muddy terrain at entrance (doors in general).
  • - Higher complexity in separation of milk for calves, though of course possible.
  • + Driving out and in of cattle no longer necessary as animals can get milked outside.
  • + Less material required (much shorter vacuum and milk tubes as compared to conventional non-automated distributed [at cow/goat..] milking)
  • ... and several others.


An ongoing system results in the following (dis-)advantages:

  • - Higher complexity.
  • + Independance of any external supplies.
   ** Water (heavily dependent on environment)
   ** Power (Solar/Heat/Water/MFC replaces Grid)
   ** Food (difficult, nevertheless this is planned for later revisions of AMOR)
  • - Redundancy of susceptible subsystems (Electronics, in general: The more complex the system the higher the vulnerability).
  • + Less cabling, water pipe laying and bundled maintenance (as you can wait for enough minor errors to accumulate before taking the system apart).
  • ... and several others.

High Level Overview

AMOR High Level Schematic PDF PDF Version: REV2, Improved & interconnected. AMOR High Level Schematic (REV2)


Separation in Subproblems & Technological Difficulties

Our AMOR consists of several submodules:

  • MECHANICAL CONSTRUCTION
    • - Difficult to be robust, lightweight (for truck to lift) & cheap the same time.
    • + Rain serves as a water supply and natural (ecologic) washing.
  • VACUUM SYSTEM
    • - Difficult to be flexible in frequency (provide user settings) and keep it simple at the same time.
    • + Could be used for several other functionality than milking (doors, ...). => No hydraulics needed.
    • Note: As the robotic manipulator should be flexible anyway, compressible air/vacuum could serve this purpose, too - stays the problem of vulnerability to leakage.
    • Vacuum pumps.
  • STORAGE CONSTRUCTION
    • Milk
    • Food
    • Water
    • Energy
    • Database for animals milk (amount, properties, ...)
    • Database for organization of the cow's fertile cycle, ...
  • SENSORICS
    • Milk properties (flow rate, derivations of that, TODO)
    • Robotic manipulator (3D camera, washing mechanism)
    • Animal within milking construction => Door states.
  • ELECTRONICS
    • Control of Doors.
    • Control of Feeding (derived from amount of milk), but also accept some user constraints (lower / upper bounds for each type of food respectively).
    • Control of Robotic manipulator (joints, gripper).
    • Collection & storage of the stored animal & product data.
  • SOFTWARE
    • Microcontroller programs capable of controlling at least two AMOR system blocks (stacked next to each other).
    • compare ELECTRONICS.


Power system

Several ideas for autonomous power can be found in the forum. The easiest solution for now will be to attach a truck or emergency generator (UPS) or simply an extension cord. So we need a possibility to plug it into the grid (1-phase might be too low, but let's go for that first as the vacuum system needs by far less energy in a mobile robot than in a conventional one). For regenerative purposes a 100 kW inverter is planned and is waiting to be tested (once I have the equipment). The last autumn prototype was a failure in too many aspects (rigidity, linear gliders of robotic manipulators) so that design was adapted in the meantime and is waiting for me finishing several blender addons. [1]

Discussion

Feel free to post critiques or technical stuff here - alternatively use the forum or under tab "talk". --Jan

  • Topic
    • Answer
    • Another post
  • next topic
    • answer
  • ..

Forum

Open Source Ecology Germany - Forum: Thread AMOR